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All Flash Array (AFA) 
• Storage infrastructure that contains only flash memory drives

• Also called Solid-State Array (SSA) 

https://images.google.com/
https://www.purestorage.com/resources/glossary/all-flash-array.html

31

https://images.google.com/
https://www.purestorage.com/resources/glossary/all-flash-array.html


Example of 
All Flash Array Products (1 brick or node)

EMC XtremIO HPE 3PAR SKHynix AFA

Capacity 36 ~ 144 TB 750 TB 552 TB

Number of SSDs 18 ~ 72 120 576

Network Ports 4~8 x 10Gb iSCSI 4~12 x 16Gb FC 3 x Gen3 PCIe

Aggregate Network 
Throughput

5 ~ 10 GB/s 8 ~ 24 GB/s 48 GB/s

A: EMC XtremIO X2 Specification
B: HPE 3PAR StoreServ Specification
C: Performance Analysis of NVMe SSD-Based All-flash Array Systems. [ISPASS’18]
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SSDs for Enterprise

Manufacturer Product Name Seq. Read 
Throughput

Seq. Write
Throughput

Capacity

Intel

DC P4800X 2.5 GB/s 2.2 GB/s 1.5 TB

DC D3700 2.1 GB/s 1.5 GB/s 1.6 TB

DC P3608 5 GB/s 3 GB/s 4 TB

Samsung
PM1725b 6.3 GB/s 3.3 GB/s 12.8 TB

PM983 3.2 GB/s 2 GB/s 3.8 TB

Intel: https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds.html
Samsung: https://www.samsung.com/semiconductor/ssd/enterprise-ssd/

34

https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds.html
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/


Bandwidth Trends for 
Network and Storage Interfaces

Interfaces: https://en.wikipedia.org/wiki/List_of_interface_bit_rates#Local_area_networks
SATA: https://en.wikipedia.org/wiki/Serial_ATA
PCIe: https://en.wikipedia.org/wiki/PCI_Express
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§ Storage throughput increases quickly
§ Storage isn’t bottleneck anymore
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Throughput of a few high-end SSDs can 
easily saturate the network throughput
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Current Trends and Challenges

§ Performance of SSDs is fairly high
§ Throughput of a few SSDs easily saturates 

network bandwidth of a AFA node

§ Garbage Collection (GC) of SSD is still 
performance bottleneck in AFA

§ What is an ideal way to manage an array of 
SSDs with the current trends?

Trends

Challenges

39



Traditional RAID Approaches

SSD SSD SSDSSD

Random writes

GC

• Previous solutions
1) Harmonia [MSST’11]
2) HPDA [TOS’12]
3) GC-Steering [IPDPS’18]

• Traditional RAID employs in-place 
update for serving write requests

• High GC overhead inside SSD due to 
random write from the host

Random writes

RAID 4/5
In-place write

OS

APP

AFA

Limitations
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Log-(based) RAID Approaches

SSD SSD SSDSSD

Random writes

Sequential writes

Log-RAID
Log-structured write

OS

APP

AFA

GC

• Log-based RAID employs log-structured 
writes to reduce GC overhead inside SSD

• Log-structured writes involve host-level 
GC, which relies on idle time

• If no idle time, GC will cause 
performance drop

• Previous solutions
1) SOFA [SYSTOR’14]
2) SRC [Middleware’15]
3) SALSA [MASCOTS’18]

Limitations
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Performance of a Log-based RAID
• Configuration

• Consist of 8 SSDs (roughly 1TB capacity)

• Workload
• Random write requests continuously for 2 hours

GC starts here
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Performance of a Log-based RAID
• Configuration

• Consist of 8 SSDs (roughly 1TB capacity)

• Workload
• Random write requests continuously for 2 hours

GC starts here

Interference between 
GC I/O and user I/O

How can we avoid this performance variation 
due to GC in All Flash Array?
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Our Solution (SWAN)

• SWAN (Spatial separation Within an Array of SSDs on a Network)

• Goals
• Provide sustainable performance up to network bandwidth of AFA
• Alleviate GC interference between user I/O and GC I/O
• Find an efficient way to manage an array of SSDs in AFA

• Approach
• Minimize GC interference through SPATIAL separation

Image: https://clipartix.com/swan-clipart-image-44906/
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Our Solution: Brief Architecture of SWAN

Random writes

SWAN

• Divide an array of SSDs into front-end and 
back-end like 2-D array
• Called, SPATIAL separation

• Employ log-structured writes
• GC effect is minimized by spatial separation

OS

APP

AFA
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Reduced 
GC effect

Log-based RAID:
Temporal separation

between GC and 
user I/O

SWAN:
Spatial separation
between GC and 

user I/O
VS.



Architecture of SWAN
• Spatial separation

• Front-end: serve all write requests
• Back-end: perform SWAN’s GC 

• Log-structured write
• Segment based append only writes, which is flash friendly
• Mapping table: 4KB granularity mapping table

• Implemented in block I/O layer
• where I/O requests are redirected from the host to the storage
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Example of Handling I/O in SWAN

… W1 W3 R7 R8 …

Block I/O Interface

… W1 W3 …

Logical Volume

Physical Volume

SSD

SSD

SSD

Write
req.

Read
req.

W RSSD

Front-end Back-end Back-end
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Example of Handling I/O in SWAN
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Procedure of I/O Handling (1/3)

SSD

SSD

SSD

SSD

SSD

SSD

Front-end Back-end Back-end

Segm
ent

(a) First - phase

• Front-end absorbs all write requests in append-only manner
• To exploit full performance of SSDs

Parity

PW

Write
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Procedure of I/O Handling (1/3)

SSD

SSD

SSD

SSD

SSD

SSD

Front-end Back-end Back-end

Segm
ent

W

W
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Write Req.

Append only
(a) First - phase

• Front-end absorbs all write requests in append-only manner
• To exploit full performance of SSDs

parallelism 
unit

Parity

PW

Write
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Procedure of I/O Handling (2/3)

SSD

SSD

SSD

SSD

SSD

SSD

Front-end Back-end Back-end

Segm
ent

(a) Second - phase

• When the front-end becomes full
• Empty back-end becomes front-end to serve write requests
• Full front-end becomes back-end
• Again, new front-end serves write requests

Parity

PW

Write

Segm
ent

Segm
ent
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Procedure of I/O Handling (2/3)
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Procedure of I/O Handling (3/3)
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(a) Third - phase

• When there is no more empty back-end

• SWAN’s GC is triggered to make free space

• SWAN chooses a victim segment from one of the back-ends

• SWAN writes valid blocks within the chosen back-end

• Finally, the victim segment is trimmed
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Procedure of I/O Handling (3/3)
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Procedure of I/O Handling (3/3)
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Feasibility Analysis of SWAN

Front-end Back-end Back-end

SSD

SSD

SSD

SSD

SSD

SSD
How many SSDs 

in front-end?

How many back-ends 
in AFA ?

Please refer to our paper for details!

SWAN GC

Analytic model of 
SWAN GC
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Evaluation Setup
• Environment

• Dell R730 server with Xeon CPUs and 64GB DRAM

• Up to 9 SATA SSDs are used (up to 1TB capacity)

• Open channel SSD for monitoring internal activity of an SSD

• Target Configurations
• RAID0/4: Traditional RAID

• Log-RAID0/4: Log-based RAID

• SWAN0/4: Our solution

• Workloads
• Micro-benchmark: Random write request

• YCSB C benchmark

Please refer to paper for more results!
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Random Write Requests for 2 Hours (8KB Sized Req.)

SWAN0Log-RAID0
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Random Write Requests for 2 Hours (8KB Sized Req.)

SWAN0Log-RAID0

GC starts here GC starts here

Interference between 
GC I/O and user I/O
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Analysis of Log-RAID’s Write Performance
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Analysis of Log-RAID’s Write Performance
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Analysis of SWAN’s Write Performance
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§ SWAN has 1 front-end 
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§ This pattern continues
§ SWAN separates write requests and GC
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Read Tail Latency for YCSB-C
• SWAN4 shows the shortest read tail latency
• RAID4 and Log-RAID4 suffers long tail latency
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Spatial separation is effective for 
handling read requests as well
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Benefits with Simpler SSDs
• SWAN can saves cost and power consumption w/o 

compromising performance by adopting simpler SSDs
1) Smaller DRAM size
2) Smaller over-provisioning space (OPS)
3) Block or segment level FTL instead of page-level FTL
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SWAN sequentially writes data to 
segments and TRIMs a large chunk 

of data in the same segment at once



Conclusion
• Provide full write performance of an array of SSDs up to network 

bandwidth limit

• Alleviate GC interference through separation of I/O induced by 
application and GC of All Flash Array

• Introduce an efficient way to manage SSDs in All Flash Array
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Thanks for attention!
Q&A



Backup slides
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Handling Read Requests in SWAN

• Recent updated data might be served at page cache or 
buffer

• Falling in front-end
• Give the highest priority to read requests

• Falling in GC back-end
• Preempt GC then serve read requests

• Falling in idle back-ends
• Serve immediately read requests
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GC overhead inside SSDs

• GC overhead should be very low inside SSDs
• SWAN writes all the data in a segment-based append-

only manner
• Then, SWAN gives TRIMs to ensure writing a segment 

sequentially inside SSDs
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Previous Solutions

Solutions Write Strategy How Separate 
User & GC I/O

Disk 
Organization

Harmonia [MSST’11] In-place write Temporal (Idle time) RAID-0

HPDA [IPDPS’10] In-place write Temporal RAID-4

GC-Steering [IPDPS’18] In-place write Temporal RAID-4/5

SOFA [SYSTOR’14] Log write Temporal Log-RAID

SALSA [MASCOTS’18] Log write Temporal Log-RAID

Purity [SIGMOD’15] Log write Temporal Log-RAID
SWAN (Proposed) Log write Spatial 2D Array
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