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All Flash Array (AFA)

 Storage infrastructure that contains only flash memory drives
* Also called Solid-State Array (SSA)
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Example of @

All Flash Array Products (1 brick or node)

_ EMC XtremlO HPE 3PAR SKHynix AFA

Capacity 36~ 144 TB /50 TB 552 TB

Number of SSDs 18~ 72 120 576
Network Ports 4~8 x 10Gb iSCSI  4~12 x 16Gb FC 3 x Gen3 PCle

Aggregate Network 5~ 10 GB/s 8 ~ 24 GB/s 48 GB/s
Throughput

A: EMC XtremlO X2 Specification
B: HPE 3PAR StoreServ Specification 32
C: Performance Analysis of NVMe SSD-Based All-flash Array Systems. [ISPASS’18] https://www.flaticon.com/
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Throughput

A: EMC XtremlO X2 Specification
B: HPE 3PAR StoreServ Specification 33
C: Performance Analysis of NVMe SSD-Based All-flash Array Systems. [ISPASS’18] https://www.flaticon.com/
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SSDs for Enterprise a

Manufacturer | Product Name - Seq. Read Seq. Write ' Capacity
- Throughput | Throughput

DC P4800X  12.5 GB/s 22GB/s  '1.5TB
| |
- DCD3700  12.1GB/s 15GB/s 11678
DCP3608  15GB/s 3 GB/s 14 TB
I I
PM1725b  16.3 GB/s 33GB/s  112.87T8
Samsung : I
PM983 13.2 GB/s 2 GB/s 13878

Intel: https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds.html 34

Samsung: https://www.samsung.com/semiconductor/ssd/enterprise-ssd/
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Bandwidth Trends for
Network and Storage Interfaces
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Interfaces: https://en.wikipedia.org/wiki/List of interface bit rates#lLocal area networks
SATA: https://en.wikipedia.org/wiki/Serial ATA
PCle: https://en.wikipedia.org/wiki/PCl_Express
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Bandwidth Trends for
Network and Storage Interfaces

20 D

= Storage throughput increases quickly

= Storage isn’t bottleneck anymore

-
— SATA Exp, L SAS-4
SAS-3
e° o

O A4 X O A O O DX D 6 A DO
S FTFLL ALY PN L N X
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Year

: S: . edia.or;
SATA: https://en.wikipedia g/wk/s ial ATA
PCle: https://en.wikipedia g/wk/PCI Express

36


https://en.wikipedia.org/wiki/List_of_interface_bit_rates
https://en.wikipedia.org/wiki/Serial_ATA
https://en.wikipedia.org/wiki/PCI_Express

Example of @

All Flash Array Products (1 brick or node)

_ EMC XtremlO HPE 3PAR SKHynix AFA

Capacity 36~ 144 TB /50 TB 552 TB

Number of SSDs 18~ 72 120 576
Network Ports 4~8 x 10Gb iSCSI  4~12 x 16Gb FC 3 x Gen3 PCle

|r Aggregate Network 5~ 10 GB/s 8 ~ 24 GB/s 48 GB/s
i Throughput

A: EMC XtremlO X2 Specification
B: HPE 3PAR StoreServ Specification 37
C: Performance Analysis of NVMe SSD-Based All-flash Array Systems. [ISPASS’18]



Example of @

All Flash Array Products (1 brick or node)

Throughput of a few high-end SSDs can
easily saturate the network throughput

Network Ports ., _ov= 12 x100b FC 3 xGen3 PCle

|r Aggregate Network 5~ 10 GB/s 8 ~ 24 GB/s 48 GB/s
I Throughput

A: EMC XtremlO X2 Specification
B: HPE 3PAR StoreServ Specification 33
C: Performance Analysis of NVMe SSD-Based All-flash Array Systems. [ISPASS’18]



Current Trends and Challenges

" Performance of SSDs is fairly high
" Throughput of a few SSDs easily saturates
network bandwidth of a AFA node

Trends

Garbage Collection (GC) of SSD is still
Challenges | performance bottleneck in AFA

What is an ideal way to manage an array of
SSDs with the current trends?




Traditional RAID Approaches

Traditional RAID employs in-place
update for serving write requests
 High GC overhead inside SSD due to

random write from the host

APP

& Random writes

RAID 4/5

In-place write

& Random writes * Previous solutions
1) Harmonia [MSST’11]

2) HPDA [TOS'12]
3) GC-Steering [IPDPS’18]

40



Log-(based) RAID Approaches

Log-based RAID employs log-structured
writes to reduce GC overhead inside SSD
* Log-structured writes involve host-level
GC, which relies on idle time
 |fnoidletime, GC will cause
performance drop

APP

& Random writes

Log-RAID

L uuctured write

& Sequential writes

* Previous solutions
1) SOFA [SYSTOR’14]

2) SRC [Middleware’15]
3) SALSA [MASCOTS’18]

41



Performance of a Log-based RAID

* Configuration

* Consist of 8 SSDs (roughly 1TB capacity)

 Workload

* Random write requests continuously for 2 hours

Throughput (MB/sec)
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Performance of a Log-based RAID

* Configuration

* Consist of 8 SSDs (roughly 1TB capacity)

 Workload

* Random write requests continuously for 2 hours

Throughput (MB/sec)

1200

1000 r

800
600
400
200

GC starts here

Interference between
GC /O and user 1/0O
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Performance of a Log-based RAID

* Configuration
* Consist of 8 SSDs (roughly 1TB capacity)

 Workload

* Random write requests continuously for 2 hours

How can we avoid this performance variation

due to GCin All Flash Array?

A

e

L
e

22~ ference between
/O and user 1/0
NG

IIme (se
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Our Solution (SWAN)

(N e
 SWAN (Spatial separation Within an Array of SSDs on a Network)

* Goals
* Provide sustainable performance up to network bandwidth of AFA
* Alleviate GC interference between user I/0 and GC |/O
* Find an efficient way to manage an array of SSDs in AFA

* Approach
* Minimize GC interference through SPATIAL separation

45
Image: https://clipartix.com/swan-clipart-image-44906/
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Our Solution: Brief Architecture of SWAN

APP

& Random writes

e Divide an array of SSDs into front-end and
back-end like 2-D array
* C(Called, SPATIAL separation

* Employ log-structured writes

GC effect is minimized by spatial separation

- e e e e e e o o e e e e e e e o o
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Our Solution: Brief Architecture of SWAN

APP

& Random writes

e Divide an array of SSDs into front-end and
back-end like 2-D array
* C(Called, SPATIAL separation

* Employ log-structured writes

GC effect is minimized by spatial separation
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Our Solution: Brief Architecture of SWAN

APP

& Random writes

e Divide an array of SSDs into front-end and
back-end like 2-D array
* C(Called, SPATIAL separation

* Employ log-structured writes

GC effect is minimized by spatial separation
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Our Solution: Brief Architecture of SWAN

& Random writes

Divide an array of SSDs into front-end and

back-end like 2-D array
SWAN * Called, SPATIAL separation

* Employ log-structured writes
write Separation GC effect is minimized by spatial separation
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Our Solution: Brief Architecture of SWAN

APP
& Random writes

e Divide an array of SSDs into front-end and
back-end like 2-D array
* C(Called, SPATIAL separation

* Employ log-structured writes

GC effect is minimized by spatial separation
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Our Solution: Brief Architecture of SWAN

Log-based RAID: @ SWAN:

Temporal separation Spatial separation
between GCand | VS. between GCand

user 1/O user 1/O




Architecture of SWAN

 Spatial separation
* Front-end: serve all write requests
* Back-end: perform SWAN’s GC

e Log-structured write
* Segment based append only writes, which is flash friendly
* Mapping table: 4KB granularity mapping table

* Implemented in block I/O layer
* where /0 requests are redirected from the host to the storage



Example of Handling 1/0 in SWAN Q00

Write Read
req. req.

Block 1/O Interface

Logical Volume

Physical Volume

__frontend ~__F Back-end =~ F Back-end__

( | Y )

L Jii Jii Jiss
1 1 | 1

I P 1 1 ! I

[ P 1 |: [

[ P 1 1 | [

: ) | :
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Example of Handling 1/0 in SWAN Q00
Block 1/0O Interface @ @ @ @

Logical Volume

Write Read
req. req.

Physical Volume = | Ogging

. Segment |

__frontend ~ __Backend A _E Back-end__

( Y Y (7 )

)i JiiL Jiso
1 1 | |

I P 1 1 ! I

[ P 1 [ : [

[ P 1 1 ! [

: I : [ : I

l\ ___________ I' l\ ___________ /' N e e e e e ;’
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Example of Handling 1/0 in SWAN Q00
Block 1/0O Interface @ @ @ @

Logical Volume

Write Read
req. req.

Physical Volume = | Ogging

. Segment |

Front-end Back-end Back-end

- - -y N N R Sy ey S ——.

1
1

1

( Vol VI )

e 1 —
like RAID i Lo |l )
parallelism l I IEE I:ESSD

{Il=-- - i i
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Example of Handling 1/0 in SWAN 00
Block 1/O Interface @ @ @ @

req. req.
Logical Volume

Physical Volume | — Logging/

Back—end/ -
——————————— \ O T | ———

. Segment |

( | ( )
5 C B
. I I I
parallelism ' i P! .
- b I I SSD
1 1l 1 ! !
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Procedure of 1/O Handling (1/3)
Write Parity

* Front-end absorbs all write requests in append-only manner
* To exploit full performance of SSDs

Front-end Back-end Back-end

(a) First - phase 7



Procedure of 1/O Handling (1/3)
Write Parity

* Front-end absorbs all write requests in append-only manner
* To exploit full performance of SSDs

Write Req.
$

Front-end Back-end Back-end

(a) First - phase =



Procedure of 1/O Handling (1/3)
Write Parity

* Front-end absorbs all write requests in append-only manner
* To exploit full performance of SSDs

Write Req.
$

Front-end Back-end Back-end

parallelism
unit

Append only

(a) First - phase »



Procedure of 1/0O Handling (2/3)
Write Parity

* When the front-end becomes full

* Empty back-end becomes front-end to serve write requests
* Full front-end becomes back-end
* Again, new front-end serves write requests

Front-end Back-end Back-end

(a) Second - phase o
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Procedure of 1/0O Handling (2/3)
Write Parity

* When the front-end becomes full
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Procedure of 1/0O Handling (2/3)
Write Parity

* When the front-end becomes full

* Empty back-end becomes front-end to serve write requests
* Full front-end becomes back-end
* Again, new front-end serves write requests
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becomes full
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Procedure of 1/0O Handling (2/3)
Write Parity

* When the front-end becomes full

* Empty back-end becomes front-end to serve write requests
* Full front-end becomes back-end
* Again, new front-end serves write requests

Write Req.

$
Front-end Back-end Front-end Back-end
becomes full
]

(a) Second - phase o



Procedure of I/O Handling (3/3) [ 0
* When there is no more empty back-end GC TRIM Write Parity

* SWAN’s GC is triggered to make free space

 SWAN chooses a victim segment from one of the back-ends
 SWAN writes valid blocks within the chosen back-end

* Finally, the victim segment is trimmed

SWAN GC Write Req.
¥
Back-end Front-end

(a) Third - phase 67



Procedure of I/O Handling (3/3) [ 0
* When there is no more empty back-end GC TRIM Write Parity

* SWAN’s GC is triggered to make free space

 SWAN chooses a victim segment from one of the back-ends
 SWAN writes valid blocks within the chosen back-end

* Finally, the victim segment is trimmed

SWAN GC Write Req.
¥
Back-end Front-end
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Procedure of I/O Handling (3/3) [ 0
* When there is no more empty back-end GC TRIM Write Parity

* SWAN’s GC is triggered to make free space

 SWAN chooses a victim segment from one of the back-ends
 SWAN writes valid blocks within the chosen back-end

* Finally, the victim segment is trimmed

SWAN GC Write Req.
A\ 14
Back-end Back-end Front-end

(a) Third - phase 69



Procedure of /O Handling (3/3) [y 7 P

* When there is no more empty back-end GC TRIM Write Parity
* SWAN’s GC is triggered to make free space
 SWAN chooses a victim segment from one of the back-ends
 SWAN writes valid blocks within the chosen back-end
* Finally, the victim segment is trimmed

SWAN GC Write Req.
A\ 14
Back-end Back-end Front-end

Ensure writing a
segment
sequentially

inside SSDs

(a) Third - phase 70



Procedure of I/O Handling (3/3) [ 0
* When there is no more empty back-end GC TRIM Write Parity

* SWAN’s GC is triggered to make free space

 SWAN chooses a victim segment from one of the back-ends
 SWAN writes valid blocks within the chosen back-end

* Finally, the victim segment is trimmed

SWAN GC Write Req.
[ )

Ensure writ All write requests and GC
segment are spatially separated

sequentially
inside SSDs

(a) Third - phase 7



Feasibility Analysis of SWAN

How many SSDs

in front-end?

Please refer to our paper for details!

How many back-ends

in AFA ?

\_ . ) \_ . )
Front-end Back-end

S5
55D

SWAN GC

—/

Back-end

SWAN GC

Analytic model of

Alleviating Garbage Collection Interference
through Spatial Separation in All Flash Arrays*

Jacho Kim Kwanghyun Lim' Young-DonJung' SungjinLee' Changwoo Min Sam H. Noh"

Virginia Tech * Cornell University 'DGIST *UNIST

Abstract

‘We present SWAN, a novel All Flash Array (AFA) manage-
Recent flash igh U0 bandwidth

(eg.3 ily surpass
the network bandwidth by aggregating a few SSDs. How-
ever, it is still challenging to unlock the full performance
of SSDs. The main source of performance degradation is
garbage collection (GC). We find that existing AFA de-
signs are susceptible 1o GC at SSD-level and AFA software-
Ievel. In designing SWAN, we aim to alleviate the perfor-
mance interference caused by GC at both levels. Unlike
the commonly-used temporal separation approach that per-
forms GC at idle time, we take a spatial separation approach
that partitions SSDs into the front-end SSDs dedicated to

T f ]
g w

gm

i -

E ‘
PEPELEES

Time (sec)
Figure 1: Performance of AFA consisting of cight SSDs un-
der random write workloads. Performance fluctuation starts
10 occur (at around 1000 seconds) when the size of user write:
request approaches the capacity of AFA, roughly 1 TB in this

is per-
formed. Compared to temporal separation of GC and appli-
cation /0, which is hard to be controlled by AFA software,
our approach guarantees that the storage bandwidth always
‘matches the full network performance without being inter-
fered by AFA-level GC. Our analytical model confirms this if
the size of front-end SSDs and the back-end SSDs are prop-
erly configured. We provide extensive evaluations that show
SWAN is effective for a variety of workloads.

1 TIntroduction

storage servers [9, 18, 21, 30, 35, 58] This is because, in-
stead of architecting a new SSD-based storage server from
scratch, existing HDD-based storage servers have evolved to
embrace high-speed SSDs. For example, an array of SSDs
inside an AFA are grouped by variants of RAID architec-
tures (¢.g., RAID4, RAIDS, or Log-RAID, which is based
= gt wriing tT e Jecae i mors et in
Section 2).




Evaluation Setup

* Environment
e Dell R730 server with Xeon CPUs and 64GB DRAM
* Up to 9 SATA SSDs are used (up to 1TB capacity)
* Open channel SSD for monitoring internal activity of an SSD

. : :
Target Configurations 1 parity per stripe

* RAIDO/4: Traditional RAID

RAIDO RAID4
* Log-RAIDO/4: Log-based RAID o RAIDG A
« SWANO/4: Our solution o8- 0g-
SWANO SWAN4

 Workloads

* Micro-benchmark: Random write request

* YCSB C benchmark
Please refer to paper for more results!
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Random Werite Requests for 2 Hours (8KB Sized Req.)
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Random Werite Requests for 2 Hours (8KB Sized Req.)

%) %)
D 1000 Q 1000 - N
@ & I
S 800 = 800 | |
~— S— I
5 600 5 600 - | |
o o
e < [
o 400 o 400 - -
S S [
o o [
= 200 = 200 -
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0 0 II | | | | | |
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Throughput (MB/sec)

Analysis of Log-RAID’s Write Performance

m——— \\/rite throughput

mmmmmmm Read throughput

600 T T T ] ]
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2 1
3
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- [
600 : : . - T m 0 g ' ' 1 1 '
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0 - _—, '
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0 .
1600 ' a———-q————ﬂ User observed
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Throughput (MB/sec)
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Throughput (MB/sec)

m——— \\/rite throughput

mmmmmmm Read throughput

Red lines increases while blue lines

drop down since GC incurs read and

write operations

i 7 I T T T T I SSD 7 Time (sec)

— . - I@ Log-RAIDO

' L—-q————ﬂ User observed
600 1200 1800 2400 3000 3600 throughput

Time (sec) 78




Throughput (MB/sec)

m——— \\/rite throughput

mmmmmmm Read throughput

Red lines increases while blue lines

drop down since GC incurs read and

write operations

Time (sec)

Performance fluctuates as all

SSDs are involved in GC Log-RAIDO

L—-q————ﬂ User observed
1200 1800 2400 3000 3600 throughput

Time (sec) 79
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Throughput (MB/sec)

Analysis of SWAN’s Write Performance
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Throughput (MB/sec)

Analysis of SWAN’s Write Performance e Write throughput

s Read throughput
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Throughput (MB/sec)

Analysis of SWAN’s Write Performance e Write throughput

s Read throughput
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Throughput (MB/sec)

Analysis of SWAN’s Write Performance
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Throughput (MB/sec)

Analysis of SWAN’s Write Performance
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Throughput (MB/sec)

Analysis of

GC starts here

packendg. Only one back-end is involved in GC
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Throughput (MB/sec)

mmmmmmm Read throughput

AnalySiS Of : ce s \\/rite throughput

GC starts here

" This pattern continues
= SWAN separates write requests and GC

Tima (car)
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Front/back-ends
consists of 2 SSDs
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throughput
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Read Tail Latency for YCSB-C

* SWAN4 shows the shortest read tail latency
* RAID4 and Log-RAID4 suffers long tail latency

S%V:igi — Log-RAID4 — -
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Benefits with Simpler SSDs

* SWAN can saves cost and power consumption w/o
compromising performance by adopting simpler SSDs

1) Smaller DRAM size
2) Smaller over-provisioning space (OPS)

3) Block or segment level FTL instead of page-level FTL

SWAN sequentially writes data to

segments and TRIMs a large chunk
of data in the same segment at once




Conclusion

* Provide full write performance of an array of SSDs up to network
bandwidth limit

* Alleviate GC interference through separation of 1/0 induced by
application and GC of All Flash Array

* Introduce an efficient way to manage SSDs in All Flash Array



Backup slides



Handling Read Requests in SWAN

* Recent updated data might be served at page cache or
buffer

* Falling in front-end
* Give the highest priority to read requests

* Falling in GC back-end
* Preempt GC then serve read requests

* Falling in idle back-ends
* Serve immediately read requests



GC overhead inside SSDs

 GC overhead should be very low inside SSDs

 SWAN writes all the data in a segment-based append-
only manner

* Then, SWAN gives TRIMs to ensure writing a segment
sequentially inside SSDs



Previous Solutions

Write Strategy How Separate Disk
User & GCI/0 Organization

Harmonia [MSST’11] In-place write Temporal (Idle time) RAID-0

HPDA [IPDPS’10] In-place write Temporal RAID-4

GC-Steering [IPDPS’18] In-place write Temporal RAID-4/5
SOFA [SYSTOR’14] Log write Temporal Log-RAID
SALSA [MASCOTS’18]  Log write Temporal Log-RAID
Purity [SIGMOD’15] Log write Temporal Log-RAID
SWAN (Proposed) Log write Spatial 2D Array
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