
Everyone Loves File:
File Storage Service (FSS) in
Oracle Cloud Infrastructure

Matteo Frigo, Bradley C. Kuszmaul,
Justin Mazzola Paluska and Alexander (Sasha) Sandler

(and many others)

2019-07-10, USENIX ATC



What is File Storage Service

I Oracle operates a cloud.

I We set up a file system for you.

I The file system appears as IP address in your
virtual private network. Behind that IP address is
a Network File Service (NFS) server.

I You rent NFS clients from us.

I You pay for what you use (some price per gigabyte
month).

I You start with 0 bytes, and can grow to as many
petabytes as you want.



Architecture of File Storage Service

NFSproc
10.0.2.97

NFSproc

NFSproc
10.0.2.54

10.0.2.53

presentation
host

NFS Client

NFS Client

NFS Client

NFS Client Dendron

DASD

host
storage

Dendron

DASD

host
storage



Simpler Idea: Use Standard File Servers



Problems with Standard File Servers

I Failover and
Replication.

I Pack several file systems
per server, and migrate
them as they grow.

I How to handle big file
systems? Somehow
filesystems must scale to
be larger than a single
server.



Scale Up: FSS Distributes Data
Structures Across Servers



What Data Structure Do We Want?
Inodes (Ritchie and Thompson [1972])
I Each file or directory is

represented by a
numbered inode.

I Directories include a
mapping from names to
inumbers. Need a data
structure for the
directory.

I Files include a mapping
from offsets to block
numbers. Need a data
structure for the block
map.



Represent Inodes as Tabular Data

instead of implementing the inodes directly.

Inode Table
inumber permissions owner
0 drwx------ bradley
42 -rw-r--r-- bradley
90 drwxrwxrwx bradley

Directory Table
inumber,name inumber
0,”u” 90
90,”foo.txt” 42

Block Table
inumber,offset inumber
42,0 9
42.4096’ 100



Store the Tabular Data in a Distributed
B-tree



Only One B-Tree

I All the filesystems are stored in a single B-tree.

I Smaller filesystems simply use fewer key-value pairs
in the B-tree.

I Even small file systems end up distributed across
many servers.



Updating the B-tree Requires Atomic
Operations Across Servers



Two-Phase Commit (2PC)
The classic strategy [Gray78, Lampson80] for building a
distributed data structure. If several servers participate
in a transaction, one machine acts as the coordinator.

1. Each participant records its part of the transaction,
and it marks its subtransaction as prepared. It
can either roll it forward or back.

2. When the coordinator hears that all have prepared,
it marks the transaction as committed (or
aborted).

3. Participants are told to roll their transactions
forward (or back). If a participant misses the
notification, it later asks the coordinator what
happened.



The Problem with 2PC

Q: What if, just before it marks a transaction
committed, the coordinator crashes and
doesn’t ever come back?
Or maybe the crash was just after the
transaction committed.

A: The clients cannot tell which case it is, and
they get stuck forever.



Paxos Doesn’t Get Stuck

I’m not going to explain Paxos in detail.

I Paxos [Lamport 98] can be used to come to a
consensus on a single value.

I Multi-Paxos can be used to come to a consensus on
a log.

I Once you have a log, you can implement an
arbitrary state machine.

I Paxos handles messages getting lost or duplicated
and servers crashing at inopportune times, without
getting stuck.



FSS Uses Paxos to Implement two-phase
commit

I Each participant in two-phase-commit is
implemented by a replicated state machine.

I The participants are nonstop, since they are
replicated.

I A replicated participant is called an Extent.



How Big is an Extent?

I The state of an extent must fit onto a single server.
So not too big.

I The overhead of the state machine is large (to
implement two-phase commit). So not too small.

I We size the extents so that hundreds of them fit
onto a server.
I Each extent manages several gigabtyes of disk.
I The extent’s state machine is a few megabytes.
I Extents are small enough to move around for load

balancing and to provide parallelism for failure recovery.
I Extents are 5-way replicated.



Multipage Store Conditional (MPSC)
I On top of 2PC, We program FSS using an

optimistic concurrency style.
I Multipage store conditional :

I Read up to 15 pages into memory, obtaining for each
page a version tag that is guaranteed to change
whenever the page is modified.

I Compute new values for the pages.
I Present the new pages along with the previously

obtained version tags to the MPSC system.
I The new pages are all written atomically (and only if

none of the read pages have changed).
I If the MPSC operation fails, no changes are made.

I MPSC operations are linearizable.
I An MPSC operation is a limited transaction: Not

too big, not too small. Lock-free style.



A Simple Throughput Model

I Each storage server provides some disk and some
network bandwidth.

I For writes, every byte is transmitted 5 times.

I So divide all the network bandwidth by 5. That is
a peak “not-to-be-exceeded” speed.

I Queueing theory says you cannot run at 100%. We
find we can run at about 1/3 of peak.

I The simple model: THe bandwidth is 1/15th of the
network bandwidth.

I Surprisingly this simple model seems to work for all
workloads we’ve seen.



Looks Like a Speedup Curve

1

2

3

0 2 4.7 5.8 8 10 12

C
· 0
.7

0G
B

s
−1

C
· 0.

52
GB

s
−1

3.31 GB s−1

2.98 GB s−1

S0.52, 2.98(C)

S0.70, 3.31(C)

B
an

d
w

id
th

(G
B

s−
1
)

Number of clients, C


