

GAIA

Glob**A**l un**I**fied p**A**ge cache for Heterogeneous systems

Tanya Brokhman Pavel Lifshits Mark Silberstein

Technion, Israel Institute of Technology Tighter integration of GPU memory into the OS page cache and file I/O mechanisms is required!

mmap() for GPUs Disciplined CPU-GPU file sharing

Improved performance

GAIA

Glob**A**l un**I**fied p**A**ge cache for Heterogeneous systems

Tanya Brokhman Pavel Lifshits Mark Silberstein

Technion, Israel Institute of Technology

Consistency model considerations

Strong consistency unsuitable!

Up to 27X performance degradation due to false sharing

GAIA

Glob**A**l un**I**fied p**A**ge cache for Heterogeneous systems

Tanya Brokhman Pavel Lifshits Mark Silberstein

Technion, Israel Institute of Technology

GAIA

A distributed, weakly-consistent page cache architecture for heterogeneous multi-GPU systems

Implements Lazy Release Consistency

Extends OS Page cache to GPU memory

- New CPU and GPU I/O optimizations
 - ✓ Up to 3X speedup in CPU file I/O
 - ✓Up to 8X speedup in unmodified realistic workloads

USENIX 2019, 4:35 PM,

Track 1, on Thursday July 11

