Pre-Select Static Caching and Neighborhood Ordering for BFS-like Algorithms on Disk-based Graph Engines

Eunjae Lee, Junghyun Kim, Keunhak Lim, Sam H. Noh, Jiwon Seo UNIST, Hanyang University

BFS-like Algorithms in Disk-based Graph Engine

- BFS-like Algorithms: recursive graph traversal
 - Eg. BFS, Shortest Paths, Betweenness Centrality, ...
- Disk-based Graph Engine
 - Graph (edge lists) is stored on disk
 - When vertices are visited, their edge lists are loaded to page cache

BFS-like Algorithms in Disk-based Graph Engine

- Page cache is inefficient for BFS-like algorithm
 - 1. Increasing size of page cache **does not** help performance

BFS-like Algorithms in Disk-based Graph Engine

- Page cache is inefficient for BFS-like algorithm
 - 1. Increasing size of page cache does not help performance
 - 2. Utilization of page cache is **low**

Our Optimization

BFS-Aware Static Cache (BASC)

- Keep separate cache for selected edge lists
- <u>Pre-loaded</u>: edges pre-selected through pre-analysis
- Static: contents of cache does not change

Neighborhood Ordering (Norder)

Graph ordering optimization for better memory utilization

1. BASC: BFS-Aware Static Cache

2. Norder: Neighborhood Ordering

Performance Improvement

- BASC + Norder: 54% faster than Gorder* + Page Cache
 - Tested with 7 BFS-like algorithms & 5 data sets

- Total cache size is 25% of graph file size
- Gorder is state-of-the-art ordering method [H. Wei, SIGMOD'16]

Presentation

Time

- Thursday, July 11, 2019
- Track 2: Graph Processing Frameworks
- 11:15 AM 12:35 PM, 4th presentation

Authors attending ATC '19

Eunjae Lee

Jiwon Seo

Sam H. Noh