

Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for Ultra-Low Latency SSDs

<u>Gyusun Lee</u>¹, Seokha Shin¹, Wonsuk Song¹, Tae Jun Ham², Jae W. Lee² and Jinkyu Jeong¹

Sungkyunkwan University (SKKU)¹ Seoul National University (SNU)²

Storage Performance Trends

• Emerging ultra low-latency SSDs deliver I/Os in <u>a few µs</u>

Source: R. E. Bryant and D. R. O'Hallaron, Computer Systems: A Programmer's Perspective, Second Edition, Pearson Education, Inc., 2015

Overhead of Kernel I/O Stack

• Low-latency SSDs expose the overhead of kernel I/O stack

Synchronous I/O vs. Asynchronous I/O

Our Idea: apply asynchronous I/O concept to the I/O stack itself

Read Path in Asynchronous I/O Stack

Asynchronous I/O Stack

Write(+fsync) Path in Asynchrnous I/O Stack

FIO Performance (on Optane SSD)

Random read

Random write (+fsync)

Main Talk of Asynchronous I/O Stack

- Detailed analysis of read/write I/O stack
- Asynchronous I/O stack
 - Proposed read and write(+fsync) paths in detail
- Lightweight block I/O layer
 - Low-latency block I/O service for ultra-low latency SSDs
- More performance measurements with various workloads

USENIX ATC 2019, Thursday July 11 Track I Exotic Kernel Features, 3:50pm

Extra Slides

Real-world Workload Performance

- RocksDB DBbench readrandom
- Filebench varmail

USENIX Annual Technical Conference 2019