
ElasticBF: Elastic Bloom Filter with Hotness Awareness for Boosting Read Performance in Large Key-Value Stores

Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, Yinlong Xu

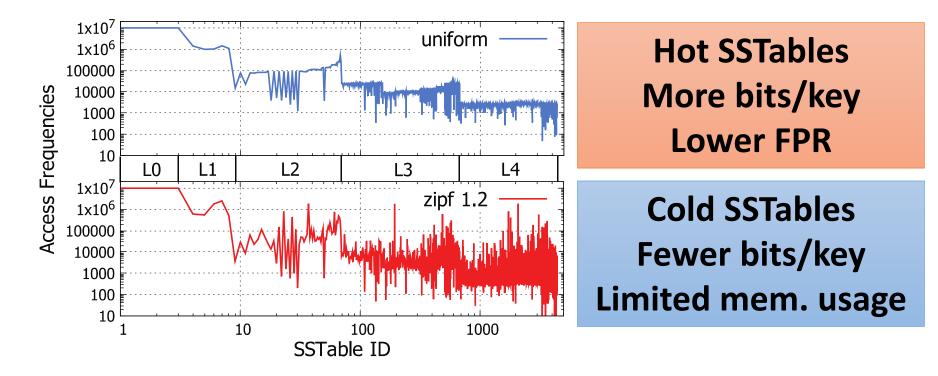
University of Science and Technology of China

The most common design of KV stores is based on LSM-tree (log structured merge tree)

Motivation

Bloom filters suffer from false positive rate

 \Box False positive rate (FPR): 0.6185^b (b: Bits-per-key)


Bits-per-key	2bits	3bits	4bits	5bits	6bits
FPR	40%	23.7%	14.7%	9.2%	5.6%

- □ How to reduce false positive rate?
 - Allocate more bits for each key
 - Incur large memory overhead

Question: how to improve the Bloom filter design with limited memory consumption?

Main Idea

ElasticBF: locality-aware elastic scheme Observation: unevenness of access frequencies (between levels/SSTables)

BF allocation: Immutable data organization and heterogeneous accesses even within an SSTable

BF separability + Fine-grained allocation

Writes in mixed workloads lead to reset the hotness info. (as compaction creates new files)

Hotness inheritance

BF adjustment requires smart decision with small memory overhead to realize the elastic feature

Cost-benefit analysis + in-memory multi-queue DS

For more detailed design and evaluations, welcome to our talk!!

ATC2019, 4:35 pm-5:55 pm, Track II, on July 11th