Cognitive SSD: A Deep Learning Engine for In-Storage Data Retrieval

Shengwen Liang^{1,2}, Ying Wang^{1,2}, Youyou Lu³, Zhe Yang³ Huawei Li^{1,2}, Xiaowei Li^{1,2}

¹State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, ²University of Chinese Academy of Sciences, ³Tsinghua University

Unstructured Data

 Performance bottleneck migrates from hardware (SSD(75-50us) to software (IO Stack (60.8us))

 Massive data movement incurs energy and latency overhead in the conventional memory hierarchy.

Conventional cluster system

Host free cluster system

Cognitive SSD as a server

Cognitive SSD: A Deep Learning Engine for In-Storage Data Retrieval

Hope to see you at our presentation

Track I: Programmable I/O Devices

July 11, 2019, Thursday, 11:15am-12:35pm Thank you

