E3: Energy-Efficient Microservices on SmartNIC-Accelerated Servers

Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo Phothilimthana

Trend 1: Energy-efficiency now major factor in DC design

- ✓ Data centers are major energy consumer
- √ Within, servers (CPUs) consume the most energy

Source: United States Data Center Energy Usage Report

Trend 2: the rise of microservices

Trend 3: recent adoption of SoC SmartNICs in servers

- √ Wimpy multicore processor on NIC
- √ Consume < 30W power
 </p>
- < = 16GB DRAM
- √ Good fit for microservices

Marvell LiquidIO II

Mellanox Bluefield

Broadcom Stingray

Netronome Agilio

Challenges of integrating SmartNICs

- √ How to route and load balance requests?
- √ How to place microservcies on a heterogeneous system?
- √ How to avoid SmartNIC overloading?

Technique 1: ECMP-based load balancing at ToR switch, to balance requests among NICs

Technique 2: communication-aware microservice placement

Technique 3: load-aware data-plane orchestrator to avoid SmartNIC overload

Evaluation results

- √ A cluster of commodity servers + LiquidIOII SmartNIC
- √ Compare four cluster setups
 - Homogeneous beefy cluster
 - Homogeneous wimpy cluster
 - Heterogenous beefy+wimpy cluster
 - Super-beefy server cluster
- √ Three applications
 - network functions
 - real time data analytics
 - IoT hub
- √ E3 achieves up to 3X energy efficiency vs. 2nd best solution

Thursday, July 11

Track 1

11:15am ~ 12:35pm