SOPHIA: Online Reconfiguration of Clustered NoSQL Databases for Time-Varying Workloads

Ashraf Mahgoub¹, Paul Wood², Alexander Medoff¹, Subrata Mitra³, *Folker Meyer*⁴, Somali Chaterji¹, Saurabh Bagchi¹

1: Purdue University; 2: Johns Hopkins University; 3: Adobe Research; 4: Argonne National Laboratory

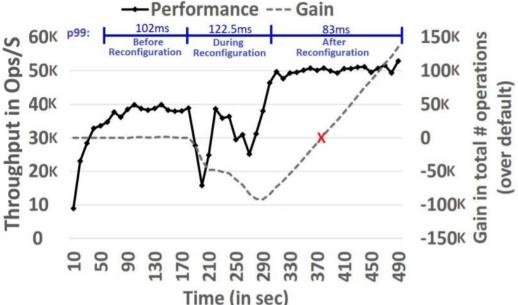
Supported by NIH R01 AI123037-01, 2016-21 & WHIN grant (from the Lilly Endowment)

Why Do Online Tuning of NoSQL Databases?

- Database Management Systems (DBMS) have a plethora of performance-related parameters
- The exact setting of these parameters determines the DBMS performance
- The optimal setting is specific to the application
- Application characteristics change over time and a desirable configuration may become sub-optimal

Our Target: Clustered NoSQL Databases (Examples: Cassandra, Redis, MongoDB, ScyllaDB)

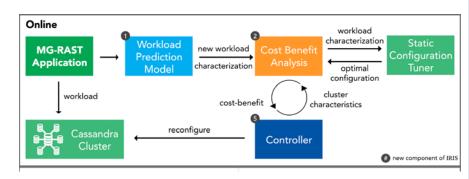
Challenges of Online Tuning


- 1. Large configuration parameter search space.
 - Complex interdependencies exist among the parameters
- 2. A new workload pattern does not necessarily mean switch to new configuration
 - Performance degradation during reconfiguration process
 - New workload pattern may be shortlived
- 3. Data availability must be maintained during reconfiguration
 - Many parameters need server restart
 - Staggered restart of servers needed through a distributed protocol to meet availability and consistency requirements

Look Before You Leap Change

Cassandra DBMS, MG-RAST production trace # servers = 2, Replication Factor (RF) = 2 Consistency Level (CL) = 1

- The default configuration can be switched to a read-optimized one for increase in throughput $(40\text{Kops/s} \rightarrow 50\text{Kops/s})$
- Temporary throughput loss due to transient unavailability of server instances as they undergo reconfiguration, one instance at a time
- The dashed line gives the gain over time in terms of the total # operations served relative to the default configuration
 - There is a cross-over point such that if the new workload pattern lasts greater than this threshold then it is worthwhile reconfiguring



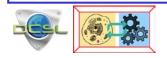
Technical Contributions: Sophia

- 1. We show that today's state-of-the-art static tuners *degrade* throughput below the default configuration and degrade data availability
- 2. SOPHIA performs cost-benefit analysis to achieve long-horizon optimized performance for clustered NoSQL DBMS in the face of dynamic workload changes
- 3. SOPHIA executes a distributed protocol to gracefully switch over the cluster to the new configuration while meeting data consistency and availability guarantees

Evaluation

- We implement and evaluate SOPHIA on two NoSQL databases, Cassandra and Redis
- We use three application traces:

- 2. Bus-tracking application trace, and
- 3. Data analytics jobs as would be submitted to an HPC cluster
- We show improvements over
 - 1. Default configuration
 - 2. Static optimized
 - 3. Naïve reconfiguration
 - 4. Commercial auto-tuning NoSQL database (ScyllaDB)



Talk and Poster Info

Track: "Big-Data Programming Models & Frameworks", July 10th (Wednesday), 2:20-3:40 pm, Track II

Poster Session: July 10th (Wednesday), 6:00-7:30 pm

