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Commodity kernels
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Commodity kernels are monolithic

• Kernel extensions (fs, network stacks, drivers) run in the same address
space

• Vulnerability in a single component propagates to the entire kernel
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Isolation
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Split monolithic kernel into isolated components

• to confine faults
• to improve reliability
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Lightweight eXecution Domains: Architecture
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LXDs:Design goals

• backward compatibility with unmodified code

• transparent object synchronization across domain boundaries
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LXDs Framework : fIPC

• fast inter process communication (fIPC)

Networking NIC driver

Quick path interconnect (QPI)

processor cachelines

Ring Buffers
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LXDs Framework : IDL

int register_netdev(struct net_device *dev);

/* Projections */
projection <struct net_device> net_device {

...
/* [modifier] <data_type> <struct_member_name> */;
[in] unsigned int flags;
[in] unsigned long long hw_features;
[in] unsigned long long features;
...
projection net_device_ops [alloc(caller)] *netdev_ops;

};

• Interface definition language

• asynchronous runtime (async threads)
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Evaluation

• Software-only device
• network (dummy)
• block device (null-blk)

• Hardware device
• Intel 82599 10 Gbps ethernet controller (ixgbe)
• iperf tx benchmarks: within 6-13% of the native driver
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