
LXDs: Towards Isolation of Kernel Subsystems

Vikram Narayanan1, Abhiram Balasubramanian2, Charlie Jacobsen2, Sarah
Spall2, Scott Bauer2, Michael Quigley2, Aftab Hussain1, Abdullah Younis1, Junjie
Shen1, Moinak Bhattacharyya1, Anton Burtsev1

1University of California, Irvine

2University of Utah



Commodity kernels

Linux kernel

Kernel space

User space

Network stack

Application

Memory management

 SchedulerFile systems Device drivers

Commodity kernels are monolithic

• Kernel extensions (fs, network stacks, drivers) run in the same address
space

• Vulnerability in a single component propagates to the entire kernel

1



Commodity kernels

Linux kernel

Kernel space

User space

Network stack

Application

Memory management

 SchedulerFile systems Device drivers

Commodity kernels are monolithic

• Kernel extensions (fs, network stacks, drivers) run in the same address
space

• Vulnerability in a single component propagates to the entire kernel 1



Commodity kernels

Linux kernel

Kernel space

User space

Network stack

Application

Memory management

 SchedulerFile systems Device drivers

Commodity kernels are monolithic

• Kernel extensions (fs, network stacks, drivers) run in the same address
space

• Vulnerability in a single component propagates to the entire kernel 1



Isolation

Linux kernel

Isolation

domainsKernel space

User space

Network stack

Application

Memory management

 SchedulerFile systems Device drivers

Split monolithic kernel into isolated components

• to confine faults
• to improve reliability

2



Lightweight eXecution Domains: Architecture

3



LXDs:Design goals

• backward compatibility with unmodified code

• transparent object synchronization across domain boundaries

4



LXDs:Design goals

• backward compatibility with unmodified code
• transparent object synchronization across domain boundaries

4



LXDs Framework : fIPC

• fast inter process communication (fIPC)

Networking NIC driver

Quick path interconnect (QPI)

processor cachelines

Ring Buffers

5



LXDs Framework : IDL

int register_netdev(struct net_device *dev);

/* Projections */
projection <struct net_device> net_device {

...
/* [modifier] <data_type> <struct_member_name> */;
[in] unsigned int flags;
[in] unsigned long long hw_features;
[in] unsigned long long features;
...
projection net_device_ops [alloc(caller)] *netdev_ops;

};

• Interface definition language

• asynchronous runtime (async threads)

6



LXDs Framework : IDL

int register_netdev(struct net_device *dev);

/* Projections */
projection <struct net_device> net_device {

...
/* [modifier] <data_type> <struct_member_name> */;
[in] unsigned int flags;
[in] unsigned long long hw_features;
[in] unsigned long long features;
...
projection net_device_ops [alloc(caller)] *netdev_ops;

};

• Interface definition language
• asynchronous runtime (async threads)

6



Evaluation

• Software-only device
• network (dummy)
• block device (null-blk)

• Hardware device
• Intel 82599 10 Gbps ethernet controller (ixgbe)
• iperf tx benchmarks: within 6-13% of the native driver

Visit us!

Usenix ATC’19
July 10, Track II - Security #1: Kernel

(4:10 - 5:30 PM)

7


