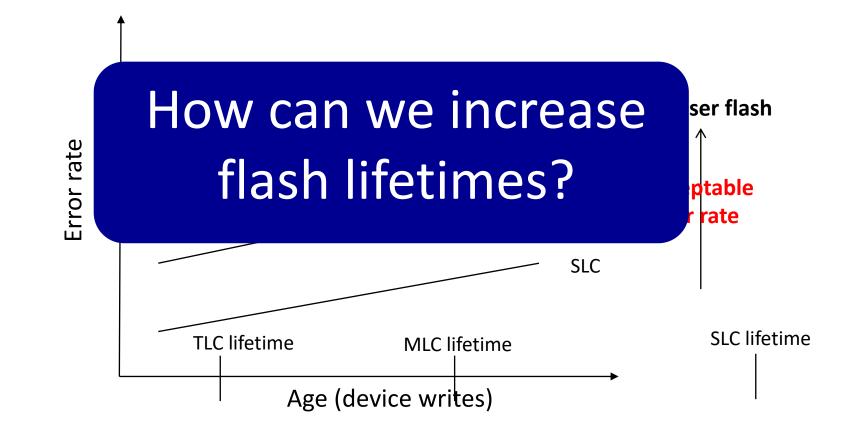
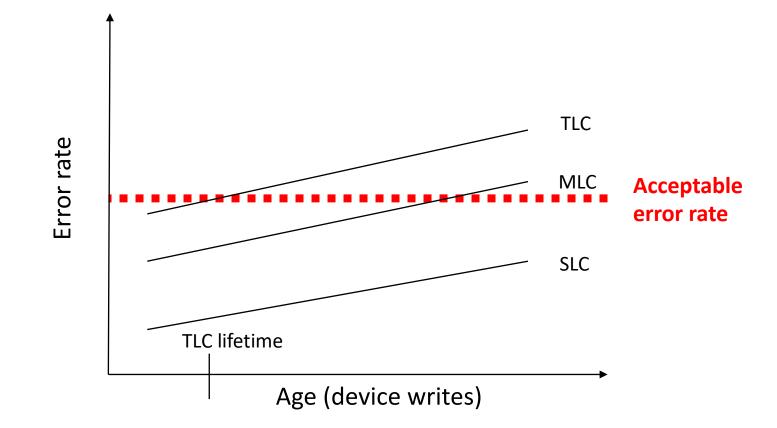
Who's Afraid of Uncorrectable Bit Errors?

Online Recovery of Flash Errors with Distributed Redundancy


Friday, July 12th, Track 1 @ 11:50am

Amy Tai¹, Andrew Kryczka², Shobhit O. Kanaujia², Kyle Jamieson³, Michael J. Freedman³, Asaf Cidon⁴

¹Princeton University and VMware Research ²Facebook ³Princeton University ⁴Columbia University



Denser flash \rightarrow shorter lifetime

Source: Novotný, R., J. Kadlec, and R. Kuchta. "NAND Flash Memory Organization and Operations." Journal of Information Technology & Software Engineering 5.1 (2015): 1.

Increasing acceptable error rate \rightarrow increase lifetimes

Source: Novotný, R., J. Kadlec, and R. Kuchta. "NAND Flash Memory Organization and Operations." Journal of Information Technology & Software Engineering 5.1 (2015): 1.

But.. hardware is expected to have low error rates

- Software is designed so bit errors are rare
 - Corruption errors cause failed operations (correctness)
 - Error-handling path is not performant (performance)

Solution: d error Isolation and

Distributed error Isolation and RECovery Techniques (DIRECT)

Observations:

- 1. Replication can fix bit errors in distributed storage systems without adding additional storage redundancy
- 2. Optimize error-recovery performance by reducing *error amplification*

Friday, July 12th, Track 1 @ 11:50am