Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems

Zhufan Wang*, Guangyan Zhang*, Yang Wang[†], Qinglin Yang*, and Jiaji Zhu[‡]

*Tsinghua University [†]The Ohio State University [‡]Alibaba Cloud

Overview of Data Recovery Protocol

- Basic idea: replicate data chunks and re-replicate lost chunks
- Responsibility of the recovery protocol:
 - Schedule the source, the destination, and the bandwidth for re-replicating each lost chunk
- Goals of scheduling: high quality and high speed
 - High quality: Achieve fast and low-interference recovery
 - High speed: The scheduling algorithm should not become the bottleneck

Observations from a Production System

- Target system:
 - AliCloud's distributed storage system: Pangu
 - Deployed on a datacenter with approximately 3500 nodes
- Observations:
 - Very-large scale
 - Tight time constraint
 - Imbalanced resources
 - Dynamic foreground traffic
- Challenge: the scheduling algorithm needs to compute a large and complex problem within seconds

Existing Approaches

- Simple and decentralized scheduler
 - E.g. GFS, HDFS, Azure, RAMCloud, Sparrow, etc
 - High speed but low quality
- Sophisticated and centralized scheduler
 - E.g. CAR, PPR, Mirador, DH-HDFS, Firmament, etc
 - High quality but low speed

Dayu: High-quality and high-speed Recovery

- Evaluation result:
 - 2.96x recovery speed with only 3.7% increase in tail latency
 - Can scale to the cluster of 25K nodes

Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems

Coming soon.

ATC 2019 Friday, July 12, 12:30 am Track: Storage Failure & Recovery

