Pragh:

Locality-preserving Graph Traversal
with Split Live Migration

Xiating Xie, Xingda Wei, Rong Chen, Haibo Chen
Shanghai Jiao Tong University

711 IPADS
110

INSTITUTE OF PARALLEL
AND DISTRIBUTED SYSTEMS

Graphs are Everywhere

Ed Alipay’

A
@ Pay DBpedia

Graph traversal queries are key operations
to support emerging applications.

, MmN
MM ﬂgﬁ

Urban Monitoring User Profiling

FRAUD

DETEGTION

Locality is Important on Traversal . Memory Access

53 2
Remote access is much slower than local access = .
(cross-node) s o

local remote

Locality is Important on Traversal , Memory Access

22
Remote access is much slower than local access : . 20X
(cross-node) 5 :

local remote

Who is friend of friend of Haibo ?

Node 1

Xingda
S, (Rong

Locality is Important on Traversal , Memory Access

22
Remote access is much slower than local access : . 20X
(cross-node) 5 :

local remote

Who is friend of friend of Haibo ?

Node 1

Xingda
.. (Rong

Locality i1s Important on Traversal

Remote access is much slower than local access
(cross-node)

Who is friend of friend of Haibo ? Node O
Node 1 Key Value

Memory Access

local remote

Key Value

~¥|Rong
Xingda i
S, | Rong

Haibo

Rong | T+

“dHan Haibo
Xingda .

Locality is Important on Traversal . Memory Access

3
Remote access is much slower than local access g j ________ 20X
(cross-node) I
° local remote
Who is friend of friend of Haibo ? NodeO ' Node1l
Node 1 Key Value Key Value

/@ | |

> (Rong Rong
9 local access :

' _\ Han Haibo
remote access .
: Xingda

Haibo

How to Preserve Locality? Live Migration

Goal: benefit <—> overhead

Traditional approach: shard-based migration

Node O Node 1
Key Value Key Value

| nsfs -
Haibo ‘ \
i Rong
: Han Haibo
Xingda .

How to Preserve Locality? Live Migration

Goal: benefit <—> overhead

Traditional approach: shard-based migration

Node O Node 1
Key Value Key Value
Rong Rong |

Haibo ‘

Rong

Han Haibo| :
: ' A
Xingda .

How to Preserve Locality? Live Migration

Goal: benefit <—> overhead

Traditional approach: shard-based migration

Node O

Key Value
Rong Rong E
Han Haibo
Xingda .

=

Node O

=

Node 1

Haibo

KEY

KEY | ...

VAL

Shard

Node 1
Key

Value

Rong

How to Preserve Locality? Live Migration

Goal: benefit <—> overhead

Traditional approach: shard-based migration

Node O
Key Value
Rong Rong

=

Node O

KEY

KEY | ...

VAL

Shard

=

Node 1

Haibo

Node 1
Key

Value

Rong

Han Haibo
Xingda .

How to Preserve Locality? Live Migration

Goal: benefit <—> overhead

Traditional approach: shard-based migration

Node O
Key Value
Rong Rong

=

Node O

l P(key)

META

~

KEY

VAL

_

Shard

lHash(key)
KEY | ...|

y :

=

Node 1

Haibo

Node 1
Key

Value

Rong

Han Haibo
Xingda .

Shard-based Migration: Dilemma grah RMAT 26

key value 54 M

Each node has to cache entire metadata.

node 3
520 O meta entry - 3000
throughput (K ops / sec) 9
2250 g
g 91 5
c
o Y
S 1500 :5.“
= 2
+* /50 =
716 =
0O . . = o _—mll 0
Before 210 212 214 216 218 220 ldeal(1 node)

shard

Shard-based Migration: Dilemma grah RMAT 26

key value 54 M

Each node has to cache entire metadata.

node 3
520 O meta entry - 3000
throughput (K ops / sec) 9
2250 g
g 91 5
c
o Y
S 1500 :5.“
= 2
+* /50 =
716 =
0O . . = o _—mll 0
Before 210 212 214 216 218 220 ldeal(1 node)

shard :
smaller shard

Shard-based Migration: Dilemma grah RMAT 26

key value 54 M

Each node has to cache entire metadata.

node 3
520 O meta entry - 3000
throughput (K ops / sec) ;5
o 2250 o
s 21 Large shard: °
O : : r w Y
© weak migration benefit 1500 %
V ! Q
§ 218 T - &
r - /50 =
216 W— (%
0 o . = o _——mmll 0
Before 210 212 214 216 218 220 ldeal(1 node)

shard '
smaller shard

Shard-based Migration: Dilemma grah RMAT 26
key value 54 M

Each node has to cache entire metadata.

node 8
O #metaentry
220 , 3000
throughput (K ops / sec) Small shard: G
Q
heavy metadata overhead v
. 2250
s 219 Large shard: O
O : : Y
© weak migration benefit / [m 1500 %
D Q
- C
216 — (%
O . . = o _—uull 0
Before 210 212 214 216 218 220 ldeal(1 node)
shard '

smaller shard

Design Overview

Pragh uses split live migration for graph traversal.

Split live migration: migrates values while keeps keys stationary

=

Node O Node 1
LHash(key)

f—addr—-) KEY

VAL

Design Overview

Pragh uses split live migration for graph traversal.
Split live migration: migrates values while keeps keys stationary

» Great migration beneﬁts://g : 5
» No metadata overhead NodeO ! Node 1

LHash(lkey)

f—addrj KEY

VAL

Designh Overview

Pragh uses split live migration for graph traversal.

Split live migration: migrates values while keeps keys stationary

» Great migration beneﬁts‘-‘//a : 5
» No metadata overhead NodeO ! Node 1

» Throughput: 19X LHaSh(:kGY)
T KEY

» Eliminate remote access: 97% raddf

» Portto Wukong (OSDI'16): 2.53X VAL I

Design Overview

Pragh uses split live migration for graph traversal.

Split live migration: migrates v)al ues while keeps keys stationary

How to achieve fully-localized split migration ?
How to migrate over evolving graphs?

How to support fine-grained and lightweight monitoring ?

» FPOI't 1O VVUKONE (VoI 10). L.OOSA ‘ VAL ‘

TTTTTTTTTTTTTTTTTTT
SSSSSSSSSSSSSSSSSSSSS

ATC 2019, 4:35 PM, Track |l, on July 11th

