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Graphs are Everywhere
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Graph traversal queries are key operations
to support emerging applications.
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Locality i1s Important on Traversal
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How to Preserve Locality? Live Migration

Goal: benefit <—> overhead

Traditional approach: shard-based migration
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Design Overview

Pragh uses split live migration for graph traversal.

Split live migration: migrates values while keeps keys stationary
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Design Overview

Pragh uses split live migration for graph traversal.

Split live migration: migrates v)al ues while keeps keys stationary

How to achieve fully-localized split migration ?
How to migrate over evolving graphs?

How to support fine-grained and lightweight monitoring ?
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