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Machine Learning Model Serving

Deploy a trained model for user requests
* Highly dynamic demand
 Stringent Service Level Objectives on latency

Desigh objectives
 Serve ML models on public cloud
e Scale to dynamic queries
* Cost-effective
* SLO-aware: e.g. 98% of the requests must be served under 500ms

6/20/19 2



Wy

Challenges & Opportunities

Unique properties of ML serving
* Compute intensive
 Hardware accelerators: GPU, TPU How to reduce over-provisioning?
e Stateless computation
. i P
Cloud services What option to choose:

 Multiple options: laaS, CaaS, FaaS, MLaaS
* Large configuration space: CPU, memory
* Cost-performance tradeoffs: preemptable, burstable instances
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Cloud Services for Model Serving

Infrastructure as a Service
(laa$)

Container as a Service
(Caa¥)

Function as a Service
(Faa$, serverless comp.)
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Cloud Services for Model Serving

CPU GPU TPU
é il vee
On- Burstabl
demand Preemptable urstable
Spot instances in AWS t2, t3 instances in AWS
Preemptable VM in Google cloud f1-micro, g1-small in Google cloud
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We designed MArk

A scale-to-demand, cost-effective, SLO-aware model serving system
on cloud

Compared with AWS’s SageMaker, MArk achieves

e Upto 7.8x cost reduction
e Better latency performance
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Welcome to our talk! Ll

Day 3, Track Il, Machine Learning Applications & System Aspects

* QOur insights of laaS, CaaS, FaaS and their configurations
* Qur insights of ML serving on GPUs and TPUs

* How MArk translates our insights into system design

* MArk’s provisioning algorithm

* The evaluation of MArk’s performance
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