Pangolin: A Fault-tolerant Persistent Memory Programming Library

Track I, 11:00am on Friday, July 12

Lu Zhang, Steven Swanson

Non-Volatile Systems Laboratory Department of Computer Science & Engineering University of California, San Diego

NVSL

Persistent memory modules finally arrive

- Working alongside DRAM
- New programming model
 - Byte addressability
 - Memory semantics
 - Direct access (DAX)

NVSL

2

Challenges with programming

- Crash consistency
 - Volatile CPU caches
 - 8-byte store atomicity

- Fault tolerance
 - Media errors
 - Software bugs

No file system can protect DAX-mapped persistent memory data.

Pangolin design goals

- Ensure crash consistency
- Protect against media and software errors
- Require very low storage overhead (1%) for fault tolerance

NVSL

Pangolin – Replication, parity, and checksums

- Combines replication and parity as redundancy
 - Similar performance compared to replication
 - Low space overhead (1% of gigabyte-sized object store)

	Metadata			
	Metadata			
	Object	Object	Object	Object
	Object			Object
	Obj	ect	Object	Object
	Object	Obj	Object	
Parity				

• Checksums all metadata and object data

Pangolin – Transactions with micro-buffering

- Provides micro-buffering-based transactions
 - Atomically updates objects, checksums, and parity
 - Prevents programming errors from corrupting PMEM

Track I, 11:00am on Friday, July 12