SOPHIA: Online Reconfiguration of Clustered NoSQL Databases for Time-Varying Workloads

<u>Ashraf Mahgoub</u>¹, Paul Wood², Alexander Medoff¹, Subrata Mitra³,

Folker Meyer⁴, Somali Chaterji¹, Saurabh Bagchi¹

1: Purdue University; 2: Johns Hopkins University; 3: Adobe

Research; 4: Argonne National Laboratory

Supported by NIH R01 AI123037-01 (2016-21),

Agenda

- Online Tuning Challenges
- Dynamic Workloads
- Prior work
- Proposed Approach
- Use cases and Evaluation
- Conclusion

Online NoSQL Tuning Challenges

- 1. Numerous configuration parameters that control and impact the performance
- 2. Workload characteristics change over time
- 3. Accordingly, reconfiguration is needed as the optimal parameters change
- 4. Reconfiguration has a cost
 - 1. Often a server restart is needed for the new configuration to take effect
 - 2. During restart data may become unavailable or throughput may be degraded
 - 3. Workload changes can be transient and therefore cost of reconfiguration may not be recouped

Limitations of Prior Work Workload Change **Application** Does not work for dynamic workloads 1. No cost-benefit analysis 2. Causes performance *degradation* over default 3. Makes data transiently unavailable

Solution Overview: SOPHIA

	Time	Configuration
Reconfiguration	T_1	$P_1 = V_{11}, P_2 = V_{12} \dots$
Reconfiguration	T_2	$P_1 = V_{21}, P_2 = V_{22} \dots$
Plan		
	T_N	$P_1 = V_{N1}, P_2 = V_{N2} \dots$

Static

Configuration

Tuner

Feature Space Reduction & Workload Prediction

- We use Rafiki (Mahgoub et al., Middleware'17) as a static tuner
 - Identifies the most impactful parameters
 - Quickly finds the optimal configuration for the current phase of the workload
- The set of most impactful parameters identified by the static tuner (Rafiki) require a server restart for their new values to take effect
- For workload prediction, we use n-order Markov-Chain models to represent the different states of the workload and predict the future patterns.

Cost-Benefit Analysis

• We estimate **the cost** of the entire reconfiguration plan as:

$$L = \sum_{k \in [1,M]} H_{\text{sys}}(\boldsymbol{W}(t_k), \boldsymbol{C}_k) \cdot T_r$$
 (1)

• H_{sys} is the overall system Ops/S, $W(t_k)$ is the workload at time t_k , C_k is the new configurations in the k^{th} step of the plan, T_r time needed by a single server to restart

Cost-Benefit Analysis (Continued)

• Benefit *B*: Improvement in the cluster's performance with the new configuration vs. with the old configuration

• We then apply Genetic Algorithms (GA) to search the space of configuration plans space and find the best

reconfiguration plan
$$\boldsymbol{C}^* = \arg\max_{\boldsymbol{C}_{\text{sys}}^{\Delta}} B(\boldsymbol{C}_{\text{sys}}^{\Delta}, \boldsymbol{W}) - L(\boldsymbol{C}_{\text{sys}}^{\Delta}, \boldsymbol{W}) \quad (3)$$

Distributed Online Reconfiguration Protocol

- Identify the *Minimum Availability Subset* using data placement information, Replication Factor (RF) and Consistency Level (CL)
 - Definition: the minimum subset of servers that cover all data records exactly CL times.
- SOPHIA ensures that at least one *Minimum Availability Subset* is up during reconfiguration ⇒ Data is continuously available

Distributed Online Reconfiguration Protocol (Cont.)

Each server performs this distributed protocol to apply new configurations

- 1. **Drain:** Flush all uncommitted data records to disk. This is needed to avoid executing long and expensive data *repair* processes.
- 2. Shutdown: The Cassandra process is killed on the node.
- 3. Configuration file: Replace the configuration file with new values for all parameters that need changing.
- 4. Restart: Restart the Cassandra process on the same node.
- 5. Sync: Wait for Cassandra's instance to completely rejoin the cluster by letting a coordinator know where to locate the node and then synchronizing missed updates during the node's downtime.

Use Cases and Evaluation

1. MG-RAST:

- Real workload traces from the largest metagenomics analysis portal
- Its workload does not have any discernible daily or weekly pattern, as the requests come from all across the globe
- Workload can change drastically over a few minutes and it is accurately predictable for 5min only

2. Bus-Tracking:

- Real workload traces from a bus-tracking mobile application
- Traces show a daily pattern of workload switches.
- Workload is accurately predictable for longer look-ahead periods (e.g. 2 hours)

3. HPC:

- Simulated workload traces from batch data analytics jobs submitted to a shared HPC queue.
- Using profiling techniques, job execution times can be predicted with high accuracy and for longer lookahead periods.

Evaluation: Redis

Redis is an in-memory data store

- By automatically selecting the right parameters for changing workloads, SOPHIA achieves the best of both worlds with jobs that vary in
 - Sizes, access patterns, and request distributions

Insights

- Online tuning of NoSQL databases for dynamic workloads is challenging
- All prior works suffer for dynamic workloads and a straightforward application actually *degrades* performance
- SOPHIA addresses all these shortcomings using an optimization technique that combines workload prediction, cost-benefit analysis, and Genetic Algorithms
- Evaluated with real workload traces and two popular NoSQL datastore (Cassandra and Redis)
- SOPHIA achieves globally optimized performance and respects user's data consistency and availability requirements

