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➢The interconnection performance does not scale well.
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Existing Work

➢In-storage computing (ISC).

Host

Drive

Controller
Storage
Chips

cmd much data
less

Example:
SELECT AVG(depdelay), origin 
FROM flight_delays
WHERE distance > 2000 
GROUP BY origin
ORDER BY flight_id;

WHERE distance > 2000



Limitations of Existing Work

➢Analyzing existing work by examining every layer of the system stack.
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INSIDER’s Approach

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

• Programming: Lack of a simple abstraction.
• Not integrated with the existing system interface.

➢Requires considerable code modifications.

➢ Programming:
A File-based abstraction
for in-storage computing.

• Runtime:
A separate control plane that 
enforces permission check and
resource scheduling.

• HW: FPGA-based.
12X perf., 31X cost efficiency.
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INSIDER Runtime

• Host file system performs permission check on requested input files.

• Corresponding LBAs are sent to drive firmware to issue storage I/Os.

➢Enforced by our trusted runtime component.
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INSIDER Runtime

• Requires drive bandwidth scheduling among drive processes.
• Adaptive and fair.

➢Cannot do at host-side INSIDER runtime --- too slow, PCIe RTT is 1 μs.
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INSIDER Runtime

• Partially offload control plane into the FPGA hardware.
• Monitors the drive bw consumption by using the dispatching knowledge.

• Provides feedback to firmware to adjust the req rate.

➢Design a policy similar with deficit round-robin for fairness.
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Programming Model --- Virtual File

• Abstract as in-storage computing as file operations.
• virt_file = drive_program(real_file)

➢Host-side POSIX-like APIs:
• int vopen(const char *path, int flags)

• ssize_t vread(int fd, void *buf, size_t count)

• ssize_t vwrite(int fd, void *buf, size_t count)

• int vsync(int fd)

• int vclose(int fd) 

• string reg_virt_file(string file_path, string acc_id)

• Example: feature selection in ML training.
• post_file = reg_virt_file(pre_file, acc_feature_selection)

➢SVM(post_file)



Evaluation



• Build an in-storage computing drive using a PCIe-based FPGA board.

Experiment Setup

Capacity 64 GB

Latency 5 μs

Sequential R/W 16 GB/s

Host/Drive Bus PCIe Gen3 x8 and x16

Host File System XFS



Application Devel.Time 
(Person-Day)

LOC

Host Drive

Grep 3 51 193

KNN 2 77 72

Statistics 3 65 170

SQL Query 5 97 256

Data Integration 5 41 307

Feature Selection 9 50 632

Bitmap file decompression 5 94 213

Applications and Their Development Efforts
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SQL Query 5 97 256

Data Integration 5 41 307

Feature Selection 9 50 632

Bitmap file decompression 5 94 213

Applications and Their Development Efforts

Taken from Willow [OSDI’14].
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➢Cost efficiency = throughput / dollars

Cost Efficiency (INSIDER vs ARM-ISC)



• Cost efficiency = throughput / dollars

➢Use the wholesale price in the evaluation.
• Xilinx Artix-7 XC7A200T: $37.

(https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-
FPGA-Field_60730073325.html)

• ARM Cortex A72 (4 cores, 1.8 GHz):  $95.

(https://www.mouser.com/ProductDetail/NXP-
Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlk
vLaqOJ8c%3D)

Cost Efficiency (INSIDER vs ARM-ISC)

https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-FPGA-Field_60730073325.html
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D
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More Details

• INSIDER vs original host-only architecture.

• Analysis of FPGA resource utilization.

➢Evaluation of INSIDER’s drive bandwidth scheduler.

…
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• “Data movement wall” prevents end users from utilizing the advance 
in storage technology.

• We present INSIDER, a full-stack redesigned storage system.
• High end-to-end performance and cost efficiency.

• A simple but effective file abstractions for in-storage computing.

➢Enables protection and virtualization for a shared environment.

Conclusion


