
INSIDER:
Designing In-Storage Computing System

for Emerging High-Performance Drive

Zain (Zhenyuan) Ruan, Tong He, Jason Cong

University of California, Los Angeles

➢“Moore’s Law” of storage drive: bandwidth doubles every two years.

Background: Data Movement Bottleneck

0

2000

4000

6000

8000

10000

12000

14000

2007 2009 2011 2013 2015 2017

Storage Bandwidth (MB/s)

• “Moore’s Law” of storage drive: bandwidth doubles every two years.

Background: Data Movement Bottleneck

0

2000

4000

6000

8000

10000

12000

14000

2007 2009 2011 2013 2015 2017

Storage Bandwidth (MB/s)

PCIe, 8 lanes

PCIe, 4 lanes

➢The interconnection performance does not scale well.

• “Moore’s Law” of storage drive: bandwidth doubles every two years.

Background: Data Movement Bottleneck

➢The interconnection performance does not scale well.

0

2000

4000

6000

8000

10000

12000

14000

2007 2009 2011 2013 2015 2017

Storage Bandwidth (MB/s)

PCIe, 8 lanes

PCIe, 4 lanes

Gap

Existing Work

➢In-storage computing (ISC).

Host

Drive

Controller
Storage
Chips

cmd much data
less

Example:
SELECT AVG(depdelay), origin
FROM flight_delays
WHERE distance > 2000
GROUP BY origin
ORDER BY flight_id;

WHERE distance > 2000

Limitations of Existing Work

➢Analyzing existing work by examining every layer of the system stack.

Programming Abstraction

System Runtime

Hardware

Limitations of Existing Work

➢HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

Programming Abstraction

System Runtime

Hardware

Limitations of Existing Work

• HW: Limited performance or flexibility.
➢ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

Programming Abstraction

System Runtime

Hardware

Limitations of Existing Work

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

➢ASIC-based --- limited to specific apps.

Programming Abstraction

System Runtime

Hardware

Limitations of Existing Work

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

➢Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

Programming Abstraction

System Runtime

Hardware

Limitations of Existing Work

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
➢Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

Programming Abstraction

System Runtime

Hardware

Limitations of Existing Work

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

➢Virtualization:

Support simultaneous multiple drive progs.

Programming Abstraction

System Runtime

Hardware

Limitations of Existing Work

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

➢Programming: Lack of a simple abstraction.
• Not integrated with the existing system interface.

• Require considerable code modifications.

Programming Abstraction

System Runtime

Hardware

Limitations of Existing Work

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

• Programming: Lack of a simple abstraction.
➢Not integrated with the existing system interface.

• Require considerable code modifications.

Programming Abstraction

System Runtime

Hardware

Limitations of Existing Work

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

• Programming: Lack of a simple abstraction.
• Not integrated with the existing system interface.

➢Require considerable code modifications.

Programming Abstraction

System Runtime

Hardware

INSIDER’s Approach

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

• Programming: Lack of a simple abstraction.
• Not integrated with the existing system interface.

• Requires considerable code modifications.

INSIDER’s Approach

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

• Programming: Lack of a simple abstraction.
• Not integrated with the existing system interface.

➢Requires considerable code modifications.

➢ HW: FPGA-based.
12X perf., 31X cost efficiency.

INSIDER’s Approach

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

• Programming: Lack of a simple abstraction.
• Not integrated with the existing system interface.

➢Requires considerable code modifications.

• HW: FPGA-based.
12X perf., 31X cost efficiency.

➢ Runtime:
A separate control plane that
enforces permission check and
resource scheduling.

INSIDER’s Approach

• HW: Limited performance or flexibility.
• ARM-based --- insufficient computing speed.

• ASIC-based --- limited to specific apps.

• Runtime: Lack of crucial supports.
• Protection:

Drive prog. may access unwarranted data.

• Virtualization:

Support simultaneous multiple drive progs.

• Programming: Lack of a simple abstraction.
• Not integrated with the existing system interface.

➢Requires considerable code modifications.

➢ Programming:
A File-based abstraction
for in-storage computing.

• Runtime:
A separate control plane that
enforces permission check and
resource scheduling.

• HW: FPGA-based.
12X perf., 31X cost efficiency.

System Design

➢GPU, ARM, X86, ASIC, FPGA…?

Choosing In-Storage Computing Unit

• GPU, ARM, X86, ASIC, FPGA…?

➢Requirements of the in-storage computing unit.

Choosing In-Storage Computing Unit

• GPU, ARM, X86, ASIC, FPGA…?

• Requirements of the in-storage computing unit.
➢High programmability: supports general workloads.

Choosing In-Storage Computing Unit

• GPU, ARM, X86, ASIC, FPGA…?

• Requirements of the in-storage computing unit.
• High programmability: supports general workloads.

➢Massive parallelism: saturates the high drive internal bandwidth.

Choosing In-Storage Computing Unit

• GPU, ARM, X86, ASIC, FPGA…?

• Requirements of the in-storage computing unit.
• High programmability: supports general workloads.

• Massive parallelism: saturates high drive internal bandwidth.

➢High energy efficiency: storage drive is originally energy-efficient (5-10W).

Choosing In-Storage Computing Unit

• Requirements of the in-storage computing unit.
• High programmability: supports general workloads.

• Massive parallelism: saturates high drive internal bandwidth.

• High energy efficiency: storage drive is originally energy-efficient (5-10W).

Choosing In-Storage Computing Unit

GPU ARM X86 ASIC FPGA

Programmability Good Good Good No Good

Parallelism

Data-
Level

Good Poor Fair Best Good

Pipeline-
Level

No No No Best Good

Energy Efficiency Fair Fair Poor Best Good

• Requirements of the in-storage computing unit.
• High programmability: supports general workloads.

• Massive parallelism: saturates high drive internal bandwidth.

• High energy efficiency: storage drive is originally energy-efficient (5-10W).

Choosing In-Storage Computing Unit

GPU ARM X86 ASIC FPGA

Programmability Good Good Good No Good

Parallelism

Data-
Level

Good Poor Fair Best Good

Pipeline-
Level

No No No Best Good

Energy Efficiency Fair Fair Poor Best Good

• Requirements of the in-storage computing unit.
• High programmability: supports general workloads.

• Massive parallelism: saturates high drive internal bandwidth.

• High energy efficiency: storage drive is originally energy-efficient (5-10W).

Choosing In-Storage Computing Unit

GPU ARM X86 ASIC FPGA

Programmability Good Good Good No Good

Parallelism

Data-
Level

Good Poor Fair Best Good

Pipeline-
Level

No No No Best Good

Energy Efficiency Fair Fair Poor Best Good

• Requirements of the in-storage computing unit.
• High programmability: supports general workloads.

• Massive parallelism: saturates high drive internal bandwidth.

• High energy efficiency: storage drive is originally energy-efficient (5-10W).

Choosing In-Storage Computing Unit

GPU ARM X86 ASIC FPGA

Programmability Good Good Good No Good

Parallelism

Data-
Level

Good Poor Fair Best Good

Pipeline-
Level

No No No Best Good

Energy Efficiency Fair Fair Poor Best Good

• Requirements of the in-storage computing unit.
• High programmability: supports general workloads.

• Massive parallelism: saturates high drive internal bandwidth.

• High energy efficiency: storage drive is originally energy-efficient (5-10W).

Choosing In-Storage Computing Unit

GPU ARM X86 ASIC FPGA

Programmability Good Good Good No Good

Parallelism

Data-
Level

Good Poor Fair Best Good

Pipeline-
Level

No No No Best Good

Energy Efficiency Fair Fair Poor Best Good

The Initial System Architecture

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

The Initial System Architecture

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

The Initial System Architecture

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

(1) offload

The Initial System Architecture

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

(2) LBAs

(3) PBAs

Host Prog.

(1) offload

The Initial System Architecture

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

(2) LBAs

(3) PBAs

Host Prog.

(1) offload

(4) Data

The Initial System Architecture

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

(1) offload

(2) LBAs

(3) PBAs

(4) Data(5) Result

• Lacks of protection.
➢Drive program can issue arbitrary storage I/O requests.

The Initial System Architecture

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

(1) offload

(2) LBAs

(3) PBAs

(4) Data(5) Result

• Lacks of protection.
• Drive program can issue arbitrary storage I/O requests.

➢Need a control plane to enforce system policies.

The Initial System Architecture

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

(1) offload

(2) LBAs

(3) PBAs

(4) Data(5) Result

➢Make drive program “compute-only”.

Separate Control Plane and Data Plane

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

(1) offload

(2) LBAs

(3) PBAs

(4) Data(5) Result

• Make drive program “compute-only”.

➢The control plane is responsible for issuing storage I/O requests.

Separate Control Plane and Data Plane

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

(1) offload

(3) PBAs

(4) Data(5) Result

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

(1) offload

(3) PBAs

(4) Data

Host
File System

(2.1) Files Paths

(5) Result

➢Host file system performs permission check on requested input files.

Separate Control Plane and Data Plane

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

(1) offload

(3) PBAs

(4) Data

Host
File System

(2.2) LBAs(2.1) Files Paths

(5) Result

• Host file system performs permission check on requested input files.

➢Corresponding LBAs are sent to drive firmware to issue storage I/Os.

Separate Control Plane and Data Plane

Separate Control Plane and Data Plane

Storage Unit

DMA

Controller

Firmware

FPGA Prog.

Drive

Host Prog.

(1) offload

(3) PBAs

(4) Data

Host
File System

(2.1) Files Paths (2.2) LBAs

(5) Result

INSIDER Runtime

• Host file system performs permission check on requested input files.

• Corresponding LBAs are sent to drive firmware to issue storage I/Os.

➢Enforced by our trusted runtime component.

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(1) offload

(3) PBAs

(4) Data

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

(5) Result
FPGA Prog.

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(3) PBAs

(4) Data

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

Core
0

Core
1

Core
2

(5) Result

(1) offload

➢Leverage partial reconfiguration to enable a “multi-core” FPGA.

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(3) PBAs

(4) Data(5) Result

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

• Leverage partial reconfiguration to enable a “multi-core” FPGA.

➢Host runtime enforces drive task scheduling centrally.

Core
0

Core
1

Core
2

(1) sched

(1) offload

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(3) PBAs

(4) Data(5) Result

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

➢Requires drive bandwidth scheduling among drive processes.

Core
0

Core
1

Core
2

(1) sched

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(3) PBAs

(4) Data(5) Result

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

• Requires drive bandwidth scheduling among drive processes.
➢Adaptive and fair.

Core
0

Core
1

Core
2

(1) sched

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(3) PBAs

(4) Data(5) Result

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

• Requires drive bandwidth scheduling among drive processes.
• Adaptive and fair.

➢Cannot do at host-side INSIDER runtime --- too slow, PCIe RTT is 1 μs.

Core
0

Core
1

Core
2

(1) sched

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(3) PBAs

(4) Data

(5) Result

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

Core
0

Core
1

Core
2

(1) sched

Scheduler

➢Partially offload control plane into the FPGA hardware.

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(3) PBAs

(4) Data

(5) Result

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

Core
0

Core
1

Core
2

(1) sched

Scheduler

• Partially offload control plane into the FPGA hardware.
➢Monitors the drive bw consumption by using the dispatching knowledge.

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(3) PBAs

(4) Data

(5) Result

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

• Partially offload control plane into the FPGA hardware.
• Monitors the drive bw consumption by using the dispatching knowledge.

➢Provides feedback to firmware to adjust the req rate.

Core
0

Core
1

Core
2

(1) sched

Scheduler

Extend the Control Plane to Support Virtualization

Storage Unit

DMA

Controller

Firmware

Drive

Host Prog.

(3) PBAs

(4) Data

(5) Result

Host
File System

(2.1) Files Paths (2.2) LBAs

INSIDER Runtime

• Partially offload control plane into the FPGA hardware.
• Monitors the drive bw consumption by using the dispatching knowledge.

• Provides feedback to firmware to adjust the req rate.

➢Design a policy similar with deficit round-robin for fairness.

Core
0

Core
1

Core
2

(1) sched

Scheduler

Programming Model --- Virtual File

Programming Model --- Virtual File

➢Abstracts in-storage computing as file operations.

Programming Model --- Virtual File

• Abstract as in-storage computing as file operations.
➢virt_file = drive_program(real_file)

Programming Model --- Virtual File

• Abstract as in-storage computing as file operations.
• virt_file = drive_program(real_file)

➢Host-side POSIX-like APIs:
• int vopen(const char *path, int flags)

• ssize_t vread(int fd, void *buf, size_t count)

• ssize_t vwrite(int fd, void *buf, size_t count)

• int vsync(int fd)

• int vclose(int fd)

• string reg_virt_file(string file_path, string acc_id)

Programming Model --- Virtual File

• Abstract as in-storage computing as file operations.
• virt_file = drive_program(real_file)

➢Host-side POSIX-like APIs:
• int vopen(const char *path, int flags)

• ssize_t vread(int fd, void *buf, size_t count)

• ssize_t vwrite(int fd, void *buf, size_t count)

• int vsync(int fd)

• int vclose(int fd)

• string reg_virt_file(string file_path, string acc_id)

➢Example: feature selection (prune high dim. feature) in ML training.

Programming Model --- Virtual File

• Abstract as in-storage computing as file operations.
• virt_file = drive_program(real_file)

➢Host-side POSIX-like APIs:
• int vopen(const char *path, int flags)

• ssize_t vread(int fd, void *buf, size_t count)

• ssize_t vwrite(int fd, void *buf, size_t count)

• int vsync(int fd)

• int vclose(int fd)

• string reg_virt_file(string file_path, string acc_id)

• Example: feature selection (prune high dim. feature) in ML training.
➢post_file = reg_virt_file(pre_file, acc_feature_selection)

Programming Model --- Virtual File

• Abstract as in-storage computing as file operations.
• virt_file = drive_program(real_file)

➢Host-side POSIX-like APIs:
• int vopen(const char *path, int flags)

• ssize_t vread(int fd, void *buf, size_t count)

• ssize_t vwrite(int fd, void *buf, size_t count)

• int vsync(int fd)

• int vclose(int fd)

• string reg_virt_file(string file_path, string acc_id)

• Example: feature selection in ML training.
• post_file = reg_virt_file(pre_file, acc_feature_selection)

➢SVM(post_file)

Evaluation

• Build an in-storage computing drive using a PCIe-based FPGA board.

Experiment Setup

Capacity 64 GB

Latency 5 μs

Sequential R/W 16 GB/s

Host/Drive Bus PCIe Gen3 x8 and x16

Host File System XFS

Application Devel.Time
(Person-Day)

LOC

Host Drive

Grep 3 51 193

KNN 2 77 72

Statistics 3 65 170

SQL Query 5 97 256

Data Integration 5 41 307

Feature Selection 9 50 632

Bitmap file decompression 5 94 213

Applications and Their Development Efforts

Application Devel.Time
(Person-Day)

LOC

Host Acc

Grep 3 51 193

KNN 2 77 72

Statistics 3 65 170

SQL Query 5 97 256

Data Integration 5 41 307

Feature Selection 9 50 632

Bitmap file decompression 5 94 213

Applications and Their Development Efforts

Taken from Willow [OSDI’14].

Host

FPGA
Storage
Chips

Tasks Reduced Data

INSIDER (Xilinx Virtex / Artix)

PCIe

Host

ARM Cores
Storage
Chips

Tasks Reduced Data

ARM-ISC (Cortex-A72)

PCIe

INSIDER vs ARM-ISC

0

2000

4000

6000

8000

10000

12000

14000

16000

Grep KNN Statistics SQL Integration Feature Sel. Bitmap

ARM-1C ARM-2C ARM-3C ARM-4C INSIDER

1.7 X 1.9 X2.2 X

58 X
17 X

4.0 X

Th
ro

u
gh

p
u

t
(M

iB
/s

)
Throughput (INSIDER vs ARM-ISC)

12 X performance on average

0

2000

4000

6000

8000

10000

12000

14000

16000

Grep KNN Statistics SQL Integration Feature Sel. Bitmap

ARM-1C ARM-2C ARM-3C ARM-4C INSIDER

1.7 X 1.9 X2.2 X

58 X
17 X

4.0 X

Th
ro

u
gh

p
u

t
(M

iB
/s

)
Throughput (INSIDER vs ARM-ISC)

0

2000

4000

6000

8000

10000

12000

14000

16000

Grep KNN Statistics SQL Integration Feature Sel. Bitmap

ARM-1C ARM-2C ARM-3C ARM-4C INSIDER

1.7 X 1.9 X2.2 X

58 X
17 X

4.0 X

Throughput (INSIDER vs ARM-ISC)
Th

ro
u

gh
p

u
t

(M
iB

/s
)

0

2000

4000

6000

8000

10000

12000

14000

16000

Grep KNN Statistics SQL Integration Feature Sel. Bitmap

ARM-1C ARM-2C ARM-3C ARM-4C INSIDER

1.7 X 1.9 X2.2 X

58 X
17 X

4.0 X

Th
ro

u
gh

p
u

t
(M

iB
/s

)
Throughput (INSIDER vs ARM-ISC)

Max drive
bandwidth

➢Cost efficiency = throughput / dollars

Cost Efficiency (INSIDER vs ARM-ISC)

• Cost efficiency = throughput / dollars

➢Use the wholesale price in the evaluation.
• Xilinx Artix-7 XC7A200T: $37.

(https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-
FPGA-Field_60730073325.html)

• ARM Cortex A72 (4 cores, 1.8 GHz): $95.

(https://www.mouser.com/ProductDetail/NXP-
Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlk
vLaqOJ8c%3D)

Cost Efficiency (INSIDER vs ARM-ISC)

https://www.alibaba.com/product-detail/XC7A200T-1FFG1156C-IC-Embedded-FPGA-Field_60730073325.html
https://www.mouser.com/ProductDetail/NXP-Freescale/LS1046ASN8T1A?qs=sGAEpiMZZMup8ZLti7BNCxtNz7%252BF43hzZlkvLaqOJ8c%3D

0

50

100

150

200

250

300

350

400

450

Grep KNN Statistics SQL Integration Feature Sel. Bitmap

ARM INSIDER

4.33 X
149 X

5.60 X
43.6 X 10.2 X

2.50 X

Cost Efficiency (INSIDER vs ARM-ISC)
C

o
st

 e
ff

ic
ie

n
cy

 (
M

iB
/$

)

4.81 X

31 X cost efficiency on average

More Details

➢INSIDER vs the original host-only architecture.

More Details

• INSIDER vs original host-only architecture.

➢Analysis of FPGA resource utilization.

More Details

• INSIDER vs original host-only architecture.

• Analysis of FPGA resource utilization.

➢Evaluation of INSIDER’s drive bandwidth scheduler.

…

➢“Data movement wall” prevents end users from utilizing the advance
in storage technology.

Conclusion

• “Data movement wall” prevents end users from utilizing the advance
in storage technology.

➢We present INSIDER, a full-stack redesigned storage system.

Conclusion

• “Data movement wall” prevents end users from utilizing the advance
in storage technology.

• We present INSIDER, a full-stack redesigned storage system.
➢High end-to-end performance and cost efficiency.

Conclusion

• “Data movement wall” prevents end users from utilizing the advance
in storage technology.

• We present INSIDER, a full-stack redesigned storage system.
• High end-to-end performance and cost efficiency.

➢A simple but effective file abstraction for in-storage computing.

Conclusion

• “Data movement wall” prevents end users from utilizing the advance
in storage technology.

• We present INSIDER, a full-stack redesigned storage system.
• High end-to-end performance and cost efficiency.

• A simple but effective file abstractions for in-storage computing.

➢Enables protection and virtualization for a shared environment.

Conclusion

