Transactuations: Where Transactions Meet the Physical World*

USENIX ATC '19

Aritra
Sengupta
(Samsung Research)

Tanakorn Leesatapornwongsa (Microsoft Research)

Masoud Saeida Ardekani (Uber Technologies) Cesar A.
Stuardo
(University of Chicago)

^{*} Work done at Samsung Research America

Failure implication goes beyond inconvenience!

When Smart Home Is Not Smart

Inconsistent Behavior ¹

Upset Customer A

"... More importantly, we were robbed when we were out on vacation. I had it set to armed away. The logs show the motion of the robbers, but it never sounded the alarm ... I no longer trust it to do what it is supposed to do when it is supposed to do ... "

```
function handleMotion(evt) {
//isIntruder reads other sensors
//and determines intrusion
  if (isIntruder(evt)
    && !state.alarmActive) {
    alarm.strobe();
    state.alarmActive = true;
                                state.alarmActive = true
       !state.alarmActive
                                 (for avoiding redundant actions)
```

```
function handleMotion(evt) {
                                        Read sensor and
//isIntruder reads other sensors
                                           app state
//and determines intrusion
  if (isIntruder(evt)
    && !state.alarmActive) {
    alarm.strobe();
    state.alarmActive = true;
                                 state.alarmActive = true
       !state.alarmActive
                                  (for avoiding redundant actions)
```

```
function handleMotion(evt) {
                                         Read sensor and
//isIntruder reads other sensors
                                            app state
//and determines intrusion
  if (isIntruder(evt)
    && !state.alarmActive) {
                                         Actuating a device
    alarm.strobe();
    state.alarmActive = true;
                                  state.alarmActive = true
       !state.alarmActive
                                   (for avoiding redundant actions)
```

```
function handleMotion(evt) {
                                          Read sensor and
//isIntruder reads other sensors
                                            app state
//and determines intrusion
  if (isIntruder(evt)
    && !state.alarmActive) {
                                          Actuating a device
    alarm.strobe();
    state.alarmActive = true;
                                          Writing app state
                                  state.alarmActive = true
       !state.alarmActive
                                   (for avoiding redundant actions)
```

Failure Example

What if actuation command is lost or a glitch in the alarm?

Failure Example

What if actuation command is lost or a glitch in the alarm?

Physical state ! = Application state

Failure Example

RF interference, ... cause the alarm to not operate as intended ...

Failure makes application and device states inconsistent

Failure makes application and device states inconsistent

Inherent concurrency in applications also leads to inconsistencies

How often can inconsistencies happen?

- Identified 3 classes of dependencies in application logic
- Dependencies capture semantic relationship between app and device
- These 3 dependencies are <u>vulnerable to failures</u>

How often can inconsistencies happen?

- Identified 3 classes of dependencies in application logic
- Dependencies capture semantic relationship between app and device
- These 3 dependencies are vulnerable to failures

By statically analyzing applications for dependencies, we can identify potential inconsistencies in smart applications

Dependency

Reading sensor

```
1. Sensing \rightarrow actuating
c = co2.value()
if (c > threshold){
   fans.on()
2. Sensing \rightarrow app state update
t = thermo.value()
if (t > 90){
   setMode("HOT")
3. Actuating \rightarrow app state update
alarm.strobe()
active =
```

Actuating based on sensor read

```
Dependency
```

Reading sensor

```
1. Sensing \rightarrow actuating
c = co2.value()
if (c > threshold){
                                      Actuating based on
   fans.on()
                                          sensor read
2. Sensing \rightarrow app state update
                                        Reading sensor
t = thermo.value()
if (t > 90){
                                      Updating app state
   setMode("HOT")
                                        based on sensor
3. Actuating \rightarrow app state update
alarm.strobe()
active
```

Dependency

Reading sensor

```
1. Sensing \rightarrow actuating
c = co2.value()
if (c > threshold){
                                      Actuating based on
   fans.on()
                                          sensor read
2. Sensing \rightarrow app state update
                                        Reading sensor
t = thermo.value()
if (t > 90){
                                      Updating app state
   setMode("HOT")
                                       based on sensor
3. Actuating \rightarrow app state update
                                       Actuating device
alarm.strobe()
                                    Updating app state tied
active
            "TRUE"
                                           to device
```

- IoT devices cannot be locked
 - Users can observe intermediate value

- IoT devices cannot be locked
 - Users can observe intermediate value
- Rolling back IoT devices have consequences
 - A user observes a door locks then rolls back to unlocked
 - Not a good user experience!

- IoT devices cannot be locked
 - Users can observe intermediate value
- Rolling back IoT devices have consequences
 - A user observes a door locks then rolls back to unlocked
 - Not a good user experience!
- Some actuations cannot be rolled back
 - Undoing a water dispenser

- High level abstraction and programming model
 - Allows a developer to read/write from/to devices
 - Failure-aware association of application and device states

- High level abstraction and programming model
 - Allows a developer to read/write from/to devices
 - Failure-aware association of application and device states
- Atomic durability for application states
 - Actuations never roll back

- High level abstraction and programming model
 - Allows a developer to read/write from/to devices
 - Failure-aware association of application and device states
- Atomic durability for application states
 - Actuations never roll back
- (Internal) atomic visibility among transactuations
 - External atomic visibility cannot be guaranteed for end users!
 - Disallows several concurrency related bugs

- High level abstraction and programming model
 - Allows a developer to read/write from/to devices
 - Failure-aware association of application and device states
- Atomic durability for application states
 - Actuations never roll back
- (Internal) atomic visibility among transactuations
 - External atomic visibility cannot be guaranteed for end users!
 - Disallows several concurrency related bugs
- Guarantees two invariants

- High level abstraction and programming model
 - Allows a developer to read/write from/to devices
 - Failure-aware association of application and device states
- Atomic durability for application states
 - Actuations never roll back
- (Internal) atomic visibility among transactuations
 - External atomic visibility cannot be guaranteed for end users!
 - Disallows several concurrency related bugs
- Guarantees two invariants

Sensing Invariant Governs executing a transactuation Actuating Invariant Governs committing a transactuation

Sensing Invariant

Transactuation executes only when staleness of its sensor reads is bounded, as per specified sensing policy

Sensing policy

How much staleness is acceptable How many failed sensors is acceptable

Example of sensing policy

at least one co2 sensor can be read within last 5 mins

Actuating Invariant

When a transactuation commits its app states, sufficient number of actuations have succeeded as per specified actuation policy

Actuation policy

How many failed actuation is acceptable

Example of actuation policy

At least one alarm should successfully turn on

```
(sensors) => {
  let active = read('active');
  if (sensors['co2'] > threshold && !read('active')) {
    actuate('fans', 'on');
    write('active', true);
  }
  ...
}
Application
logic
```

```
let tx = new Transactuation();
tx.perform(
   (sensors) => {
    let active = read('active');
     if (sensors['co2'] > threshold && !read('active')) {
       actuate('fans', 'on');
      write('active', true);
```

```
let tx = new Transactuation();
                   Sensing policy
tx.perform(['co2'], 5m, 'sense_all'
   (sensors) => {
    let active = read('active');
     if (sensors['co2'] > threshold && !read('active')) {
       actuate('fans', 'on');
       write('active', true);
```

```
let tx = new Transactuation();
                                        Actuating policy
                   Sensing policy
tx.perform(['co2'], 5m, 'sense_all', 'act all',
   (sensors) => {
     let active = read('active');
     if (sensors['co2'] > threshold && !read('active')) {
       actuate('fans', 'on');
       write('active', true);
```

Execution Model

T₁

1. Start if
Sensing policy is satisfied

Execution Model

Sensing policy is satisfied

2. Speculative commit

Find a serializable order

Avoid rollback

Execution Model

Execution Model

Execution Model

Implementation: Relacs

- Runtime called Relacs is built on Azure technology
 - Azure Functions (serverless functions)
 - Cosmos DB (Relacs store)

Integrated to Samsung SmartThings IoT platform

Evaluation

- Programmability
- Correctness
- Runtime overhead without failures
- Runtime overhead with failures

Programmability

Lines of Codes

Application	Original App	Original App + Consistency	Transactuation
Rise and Shine (Cn1)	72	195	68
Whole House Fan (Cn2)	29	176	26
Thermostat Auto Off (Cn3)	70	198	68
Auto Humidity Vent (Ee1)	49	170	100
Lights Off With No Motion (Ee2)	56	161	67
Cameras On When Away (Sc1)	31	149	88
Nobody Home (Sc2)	65	175	62
Smart Security (Sc3)	144	323	144
Co2 Vent (Sf1)	29	152	26
Lock It When I Leave (Sf2)	51	180	54

Programmability

Lines of Codes

Application	Original App	Original App + Consistency	Transactuation
Rise and Shine (Cn1)	72	195	68
Whole House Fan (Cn2)	29	176	26
Thermostat Auto Off (Cn3)	70	198	68
Auto Humidity Vent (Ee1)	49	170	100
Lights Off With No Motion (Ee2)	56	161	67
Cameras On When Away (Sc1)	31	149	88
Nobody Home (Sc2)	65	175	62
Smart Security (Sc3)	144	323	144
Co2 Vent (Sf1)	29	152	26
Lock It When I Leave (Sf2)	51	180	54

Runtime Overhead without Failures

Runtime Overhead without Failures

Runtime Overhead without Failures

Conclusion

• Established a critical reliability issue due to inconsistencies

Transactuation allows a developer to program in a failure-aware way

 Demonstrated transactuation's programmability, performance, and effectiveness

Additional Slides

