
Transactuations:
Where Transactions Meet the Physical World*

Aritra
Sengupta

(Samsung Research)

* Work done at Samsung Research America

USENIX ATC ‘19

Tanakorn
Leesatapornwongsa
(Microsoft Research)

Masoud
Saeida Ardekani

(Uber Technologies)

Cesar A.
Stuardo

(University of Chicago)

• IoT solutions are becoming ubiquitous
• Hundreds of applications for smart

homes
• Automation
• Security
• Safety

• Early stage and immature

• IoT solutions are becoming ubiquitous
• Hundreds of applications for smart

homes
• Automation
• Security
• Safety

• Early stage and immature

Failure implication goes beyond inconvenience!

When Smart Home Is Not Smart

Inconsistent Behavior 1

Upset Customer A
‘’... More importantly, we were robbed when we were out on vacation.
I had it set to armed away. The logs show the motion of the robbers,
but it never sounded the alarm ... I no longer trust it to do what it is
supposed to do when it is supposed to do ... ‘’

[1] SmartThings Community: https://community.smartthings.com

function handleMotion(evt) {
//isIntruder reads other sensors
//and determines intrusion

if (isIntruder(evt)
&& !state.alarmActive) {
alarm.strobe();
state.alarmActive = true;

}
}

&
!state.alarmActive

state.alarmActive = true

(for avoiding redundant actions)

Intrusion Detection Application

function handleMotion(evt) {
//isIntruder reads other sensors
//and determines intrusion

if (isIntruder(evt)
&& !state.alarmActive) {
alarm.strobe();
state.alarmActive = true;

}
}

&
!state.alarmActive

state.alarmActive = true

(for avoiding redundant actions)

Intrusion Detection Application

Read sensor and
app state

function handleMotion(evt) {
//isIntruder reads other sensors
//and determines intrusion

if (isIntruder(evt)
&& !state.alarmActive) {
alarm.strobe();
state.alarmActive = true;

}
}

&
!state.alarmActive

state.alarmActive = true

(for avoiding redundant actions)

Intrusion Detection Application

Read sensor and
app state

Actuating a device

function handleMotion(evt) {
//isIntruder reads other sensors
//and determines intrusion

if (isIntruder(evt)
&& !state.alarmActive) {
alarm.strobe();
state.alarmActive = true;

}
}

&
!state.alarmActive

state.alarmActive = true

(for avoiding redundant actions)

Intrusion Detection Application

Read sensor and
app state

Actuating a device

Writing app state

Failure Example

&
!state.alarmActive

state.alarmActive = true
(for avoiding redundant actions)

What if actuation command is lost or a glitch in the alarm?

Failure Example

&
!state.alarmActive

state.alarmActive = true
(for avoiding redundant actions)

What if actuation command is lost or a glitch in the alarm?

Physical state ! = Application state

Inconsistency

Failure Example

&
!state.alarmActive

state.alarmActive = true
(for avoiding redundant actions)

What if actuation command is lost or a glitch in the alarm?

Physical state ! = Application state
The alarm is based on wireless transmissions … can be subject to
RF interference, … cause the alarm to not operate as intended …

WARNING!

Inconsistency

Failure makes application and device states
inconsistent

Failure makes application and device states
inconsistent

Inherent concurrency in applications also leads to
inconsistencies

How often can inconsistencies happen?

• Identified 3 classes of dependencies in application logic
• Dependencies capture semantic relationship between app and device
• These 3 dependencies are vulnerable to failures

How often can inconsistencies happen?

• Identified 3 classes of dependencies in application logic
• Dependencies capture semantic relationship between app and device
• These 3 dependencies are vulnerable to failures

By statically analyzing applications for
dependencies, we can identify potential

inconsistencies in smart applications

Dependency

c = co2.value()
if (c > threshold){

fans.on()
}

t = thermo.value()
if (t > 90){

setMode(“HOT”)
}

alarm.strobe()

active = “TRUE”

1. Sensing à actuating

2. Sensing à app state update

3. Actuating à app state update

Reading sensor

Actuating based on
sensor read

Dependency

c = co2.value()
if (c > threshold){

fans.on()
}

t = thermo.value()
if (t > 90){

setMode(“HOT”)
}

alarm.strobe()

active = “TRUE”

1. Sensing à actuating

2. Sensing à app state update

3. Actuating à app state update

Reading sensor

Actuating based on
sensor read

Updating app state
based on sensor

Reading sensor

Dependency

c = co2.value()
if (c > threshold){

fans.on()
}

t = thermo.value()
if (t > 90){

setMode(“HOT”)
}

alarm.strobe()

active = “TRUE”

1. Sensing à actuating

2. Sensing à app state update

3. Actuating à app state update

Reading sensor

Actuating based on
sensor read

Updating app state
based on sensor

Reading sensor

Actuating device

Updating app state tied
to device

Can Transactions address the problem?

NO

Can Transactions address the problem?

NO
• IoT devices cannot be locked
• Users can observe intermediate value

Can Transactions address the problem?

NO
• IoT devices cannot be locked
• Users can observe intermediate value

•Rolling back IoT devices have consequences
• A user observes a door locks then rolls back to unlocked
• Not a good user experience!

Can Transactions address the problem?

NO
• IoT devices cannot be locked
• Users can observe intermediate value

•Rolling back IoT devices have consequences
• A user observes a door locks then rolls back to unlocked
• Not a good user experience!

•Some actuations cannot be rolled back
• Undoing a water dispenser

Transactuation
• High level abstraction and programming model

• Allows a developer to read/write from/to devices
• Failure-aware association of application and device states

Transactuation
• High level abstraction and programming model

• Allows a developer to read/write from/to devices
• Failure-aware association of application and device states

• Atomic durability for application states
• Actuations never roll back

Transactuation
• High level abstraction and programming model

• Allows a developer to read/write from/to devices
• Failure-aware association of application and device states

• Atomic durability for application states
• Actuations never roll back

• (Internal) atomic visibility among transactuations
• External atomic visibility cannot be guaranteed for end users!
• Disallows several concurrency related bugs

Transactuation
• High level abstraction and programming model

• Allows a developer to read/write from/to devices
• Failure-aware association of application and device states

• Atomic durability for application states
• Actuations never roll back

• (Internal) atomic visibility among transactuations
• External atomic visibility cannot be guaranteed for end users!
• Disallows several concurrency related bugs

• Guarantees two invariants

Transactuation
• High level abstraction and programming model

• Allows a developer to read/write from/to devices
• Failure-aware association of application and device states

• Atomic durability for application states
• Actuations never roll back

• (Internal) atomic visibility among transactuations
• External atomic visibility cannot be guaranteed for end users!
• Disallows several concurrency related bugs

• Guarantees two invariants

Sensing Invariant
Governs executing a

transactuation

Actuating Invariant
Governs committing a

transactuation

Sensing Invariant
Transactuation executes only when staleness of its sensor reads is bounded,

as per specified sensing policy

Example of sensing policy
at least one co2 sensor can be read within last 5 mins

Sensing policy
How much staleness is acceptable

How many failed sensors is acceptable

Actuating Invariant
When a transactuation commits its app states, sufficient number of actuations

have succeeded as per specified actuation policy

Example of actuation policy
At least one alarm should successfully turn on

Actuation policy
How many failed actuation is acceptable

(sensors) => {
let active = read(‘active’);
if (sensors[‘co2’] > threshold && !read(‘active’)) {

actuate(‘fans’, ‘on’);
write(‘active’, true);

}
...

}

Simplified Example

Application
logic

(sensors) => {
let active = read(‘active’);
if (sensors[‘co2’] > threshold && !read(‘active’)) {

actuate(‘fans’, ‘on’);
write(‘active’, true);

}
...

}

let tx = new Transactuation();

tx.perform(

Simplified Example

Application
logic

);

(sensors) => {
let active = read(‘active’);
if (sensors[‘co2’] > threshold && !read(‘active’)) {

actuate(‘fans’, ‘on’);
write(‘active’, true);

}
...

}

let tx = new Transactuation();

tx.perform(

Simplified Example

Sensing policy

Application
logic

);

[‘co2’], 5m, ‘sense_all’

(sensors) => {
let active = read(‘active’);
if (sensors[‘co2’] > threshold && !read(‘active’)) {

actuate(‘fans’, ‘on’);
write(‘active’, true);

}
...

}

let tx = new Transactuation();

tx.perform(

Simplified Example

Actuating policySensing policy

Application
logic

);

[‘co2’], 5m, ‘sense_all’ , ‘act_all’,

Execution Model

1. Start if
Sensing policy is

satisfied

T1

Final Commit Phase

Execute app logic
defer actuations

1. Start if
Sensing policy is

satisfied
2. Speculative commit

T1

T2

Trigger

Final Commit Phase

Find a serializable order

Avoid rollback

Execution Model
Execute app logic
defer actuations

Actuate devices

1. Start if
Sensing policy is

satisfied
2. Speculative commit

3. Final commit according to
Actuating policy

T1

T2

Trigger

Final Commit Phase

Find a serializable order

Avoid rollback

Execution Model

Actuate devices

T1

T2

Trigger

Final Commit Phase

Overlapping computation
and actuation

Execution Model

Actuate devices

T1

T2

T3

WaitTrigger

Final Commit Phase

Overlapping computation
and actuation

Trigger

Execution Model

Implementation: Relacs

• Runtime called Relacs is built on Azure technology
• Azure Functions (serverless functions)
• Cosmos DB (Relacs store)

• Integrated to Samsung SmartThings IoT platform

Evaluation

• Programmability
• Correctness
• Runtime overhead without failures
• Runtime overhead with failures

Programmability Lines of Codes

Application Original App Original App +
Consistency

Transactuation

Rise and Shine (Cn1) 72 195 68

Whole House Fan (Cn2) 29 176 26

Thermostat Auto Off (Cn3) 70 198 68

Auto Humidity Vent (Ee1) 49 170 100

Lights Off With No Motion (Ee2) 56 161 67

Cameras On When Away (Sc1) 31 149 88

Nobody Home (Sc2) 65 175 62

Smart Security (Sc3) 144 323 144

Co2 Vent (Sf1) 29 152 26

Lock It When I Leave (Sf2) 51 180 54

Programmability Lines of Codes

Application Original App Original App +
Consistency

Transactuation

Rise and Shine (Cn1) 72 195 68

Whole House Fan (Cn2) 29 176 26

Thermostat Auto Off (Cn3) 70 198 68

Auto Humidity Vent (Ee1) 49 170 100

Lights Off With No Motion (Ee2) 56 161 67

Cameras On When Away (Sc1) 31 149 88

Nobody Home (Sc2) 65 175 62

Smart Security (Sc3) 144 323 144

Co2 Vent (Sf1) 29 152 26

Lock It When I Leave (Sf2) 51 180 54

Runtime Overhead without Failures

0

2

4

6

8

10

12

14

Cn1 Cn2 Cn3 Ee1 Ee2 Sc1 Sc2 Sc3 Sf1 Sf2 GM

Ex
ec

ut
io

n
tim

e
(s

)

Original Transactuation

Runtime Overhead without Failures

0

2

4

6

8

10

12

14

Cn1 Cn2 Cn3 Ee1 Ee2 Sc1 Sc2 Sc3 Sf1 Sf2 GM

Ex
ec

ut
io

n
tim

e
(s

)

Original Transactuation

50% overhead with
transactuations

Runtime Overhead without Failures

0

2

4

6

8

10

12

14

Cn1 Cn2 Cn3 Ee1 Ee2 Sc1 Sc2 Sc3 Sf1 Sf2 GM

Ex
ec

ut
io

n
tim

e
(s

)

Original Transactuation

Serverless function
triggering overhead

50% overhead with
transactuations

Conclusion

• Established a critical reliability issue due to inconsistencies

• Transactuation allows a developer to program in a failure-aware way

• Demonstrated transactuation’s programmability, performance, and
effectiveness

Additional Slides

Relacs Serverless
System Functions

Relacs Store

…

Relacs

Relacs Serverless
System Functions

…

Read Sensors

Relacs
Relacs Store

Relacs Serverless
System Functions

…

Read Sensors

Relacs
Relacs Store

Transform to
Serverless Function

Relacs Serverless
System Functions

…

Read Sensors

Relacs
Relacs Store

Transform to
Serverless Function

1. Read
Sensors

Relacs Serverless
System Functions

…

Read Sensors

Relacs
Relacs Store

Transform to
Serverless Function

1. Read
Sensors

2. Speculative Commit

Relacs Serverless
System Functions

…

Read Sensors

Relacs
Relacs Store

Transform to
Serverless Function

1. Read
Sensors

2. Speculative Commit

3. Final Commit
(actuate devices)

