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6Temporary data is an important class of data for data processing workloads
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Map-reduce job ML training

97 out of 100 TPC-DS 
queries includes at least

“order by”, “group by” or “join”

50% of all jobs at FB
have at least 1 shuffle

[Riffle/Eurosys’18]

ML Worflow
[Apache Airflow,

MLFlow, etc.]
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put your #assignedhashtag here by setting the footer in view-header/footer
● Inefficient:

– Difficult to leverage modern networking and storage hardware 
(e.g., 100 Gb/s Ethernet, NVMe Flash, etc.)

Inflexible: 
emporary data management hard-wired with data processing 
framework

Difficult to change deployment (e.g., disaggregation, tiered 
storage, etc.)

Shortcomings of Temporary Data Storage 
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How should the temporary data 
store look?

Can we use an existing storage 
platform, e.g., KV store, FS, etc.?
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put your #assignedhashtag here by setting the footer in view-header/footer● Perform well for wide range of data sizes
– A few KB to many GBs per storage object

● Support large data volumes
– Can’t keep all data in memory all the time

● Provide convenient abstractions for storing temporary
– Key-value, File, what else?

● Scalability

● Fault-tolerance, Durability
– Temporary data is short-lived, can we use coarse grained recovery?

Temporary Data Storage Requirements
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put your #assignedhashtag here by setting the footer in view-header/footer

● Distributed storage architecture for temporary data

● Fusion of filesystem and key-value semantics 

● Designed for high-performance hardware

NodeKernel
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NodeKernel: Data Model
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NodeKernel: Node Types
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NodeKernel: System Architecture
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NodeKernel: System Architecture
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Example: KeyValue PUT
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put your #assignedhashtag here by setting the footer in view-header/footer● Implementation of the NodeKernel architecture

● Low-latency RDMA-based RPC between client and 
metadata servers

● Two storage classes:
– Flash accessed via NVM-over-Fabrics

– DRAM accessed via RDMA 

● Open source: crail.apache.org

Apache Crail 
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Pu, ur #assignedhashtag here by setting the footer in view-header/footer● 16 node cluster, machine hardware:
– 100 Gb/s RDMA RoCE

– 256 GB DRAM

– Intel Optane NVMe SSD

● Evaluation questions:
– Any size: how well is Crail performing for different object sizes?

– Modern hardware: are we able to accelerate workloads?

– Flexibility: what benefits we get by decoupling data processing and temporary data 
storage?

– Abstractions: Are KeyValue, File and Bag abstractions helpful?

Evaluation
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Small and Large Data Sets

Crail serves small and large data sets close to the hardware limit
(latency RDMA: 3us, latency Optane 15us, bandwidth RDMA: 100 Gb/s)

KeyValue GET (256B) File read (10GB)
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Spark Shuffle using Crail::Bag
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Spark Shuffle using Crail::Bag
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Spark GroupBy (80M keys, 4K)
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Spark shuffling via Crail on a single core is 2x faster
than vanilla Spark on 8 cores per executor (8 executors)
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Flexible Deployment

Crail

HDFS,
S3

HDFS,
S3

Data processing job

configuration

Disaggregation,
Flash/DRAM ratio,

RDMA, TCP,
NVM-of-Fabrics,

etc.
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DRAM / Flash Ratio

Flexible deployment: Crail permits trading performance for cost

200GB Sorting
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put your #assignedhashtag here by setting the footer in view-header/footer● Sharing temporary efficiently in data processing workloads is 
challenging
– Inefficient in deployments with modern hardware

– Inflexible: difficult to use storage tiering, disaggregation, etc.

● NodeKernel: distributed storage architecture for temporary data 
storage
– Fusion of Filesystem and Key-Value semantics in single storage namespace

● Apache Crail: Implementation of NodeKernel for RDMA and NVMf
– Accelerates temporary data storage on modern hardware

– Enable flexible deployment: storage tiering, disaggregation, etc.

Conclusions
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put your #assignedhashtag here by setting the footer in view-header/footer● Crail: 

https://github.com/apache/incubator-crail

● Crail shuffler: 

https://github.com/zrlio/crail-spark-io

● YCSB benchmark:

https://github.com/brianfrankcooper/YCSB

(includes Crail)

Open Source

https://github.com/apache/incubator-crail
https://github.com/zrlio/crail-spark-io
https://github.com/brianfrankcooper/YCSB
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Backup
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YCSB Benchmark: GET Latency

1KB KV pairs: ~12us (DRAM) and 30us (NVMe) 
100KB KV pairs: ~30us (DRAM) and 40us (NVMe) 
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Persistence & Fault Tolerance

● Data plane 
– No replication

– Graceful handling of faulty or crashed storage servers

(signaled at client during read/write ops)

● Meta data plane
– Persist metadata state using operation logging

– Shutdown and replay log to re-create state

● Pluggable log device
– Current log is on local FS

– Could be a distributed log: maintain a hot standby 
metadata server

clients

Metadata
server

Metadata
server

     RPC

log 
operation

replay
log log interface

log 
mplementation
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Crail Data Plane
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