
Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic,
Adrian Schuepbach, Bernard Metzler

Unification of Temporary
Storage in the
NodeKernel Architecture

2

Temporary/Intermediate Data

B
ro

ad
ca

st

S
hu

ffl
e

M
ap

R
ed

uc
e

In
pu

t
da

ta

O
ut

pu
t d

at
a

Map-reduce job

HDFS,
S3

HDFS,
S3

3

Temporary/Intermediate Data

B
ro

ad
ca

st

S
hu

ffl
e

M
ap

R
ed

uc
e

In
pu

t
da

ta

O
ut

pu
t d

at
a

Map-reduce job

HDFS,
S3

HDFS,
S3

4

Temporary/Intermediate Data

B
ro

ad
ca

st

S
hu

ffl
e

M
ap

R
ed

uc
e

In
pu

t
da

ta

In
te

rm
ed

ia
te

da

ta

HDFS,
S3

HDFS,
S3

HDFS,
S3

Map-reduce job ML training

O
ut

pu
t

da
ta

5

Temporary/Intermediate Data
In

pu
t

da
ta

HDFS,
S3

HDFS,
S3

HDFS,
S3

ML pre-processing
 (Spark job)

ML training
(Tensorflow job)

normalized
images

Map-reduce job

O
ut

pu
t

da
ta

ML training

6Temporary data is an important class of data for data processing workloads

Temporary/Intermediate Data

HDFS,
S3

HDFS,
S3

HDFS,
S3

Map-reduce job ML training

97 out of 100 TPC-DS
queries includes at least

“order by”, “group by” or “join”

50% of all jobs at FB
have at least 1 shuffle

[Riffle/Eurosys’18]

ML Worflow
[Apache Airflow,

MLFlow, etc.]

7

put your #assignedhashtag here by setting the footer in view-header/footer
● Inefficient:

– Difficult to leverage modern networking and storage hardware
(e.g., 100 Gb/s Ethernet, NVMe Flash, etc.)

Inflexible:
emporary data management hard-wired with data processing
framework

Difficult to change deployment (e.g., disaggregation, tiered
storage, etc.)

Shortcomings of Temporary Data Storage

8

put your #assignedhashtag here by setting the footer in view-header/footer
● Inefficient:

– Difficult to leverage modern networking and storage hardware
(e.g., 100 Gb/s Ethernet, NVMe Flash, etc.)

Inflexible:
emporary data management hard-wired with data processing
framework

Difficult to change deployment (e.g., disaggregation, tiered
storage, etc.)

Shortcomings of Temporary Data Storage

Trivedi/HotCloud’16Ousterhout/NSDI’16

9

put your #assignedhashtag here by setting the footer in view-header/footer
● Inefficient:

– Difficult to leverage modern networking and storage hardware
(e.g., 100 Gb/s Ethernet, NVMe Flash, etc.)

● Inflexible:
– Temporary data management hard-wired with data processing

framework

– Difficult to change deployment (e.g., disaggregation, tiered
storage, etc.)

Shortcomings of Temporary Data Storage

10

B
ro

ad
ca

st

S
hu

ffl
e

M
ap

R
ed

uc
e

In
pu

t
da

ta

In
te

rm
ed

ia
te

da

ta

O
ut

pu
t

da
ta

Instead of this...

Can’t implement
every operation
for all the different
hardware and
deployment
options

11

B
ro

ad
ca

st

S
hu

ffl
e

M
ap

R
ed

uc
e

In
pu

t
da

ta

In
te

rm
ed

ia
te

da

ta

O
ut

pu
t

da
ta

...better do this

Implement hardware
support once and
support different
operations and
frameworks

12

How should the temporary data
store look?

Can we use an existing storage
platform, e.g., KV store, FS, etc.?

13

Temporary data distribution

0

10

20

30

40

50

60

70

80

90

100

1 1kB 1MB 1GB

C
D

F

data size

TPC-DS

PR-Twitter

ML-Cocoa

Wide range of data sets (per task)

14

Temporary data distribution

0

10

20

30

40

50

60

70

80

90

100

1 1kB 1MB 1GB

C
D

F

data size

TPC-DS

PR-Twitter

ML-Cocoa

Wide range of data sets (per task)

KV-Store
regime:
RAMCloud,
ccKVS, etc.

15

Temporary data distribution

0

10

20

30

40

50

60

70

80

90

100

1 1kB 1MB 1GB

C
D

F

data size

TPC-DS

PR-Twitter

ML-Cocoa

Wide range of data sets (per task)

KV-Store
regime:
RAMCloud,
ccKVS, etc.

Filesystem
regime:
Octopus,
Gassyfs,
etc.

16

Temporary data distribution

0

10

20

30

40

50

60

70

80

90

100

1 1kB 1MB 1GB

C
D

F

data size

TPC-DS

PR-Twitter

ML-Cocoa

Wide range of data sets (per task)

KV-Store
regime:
RAMCloud,
ccKVS, etc.

Filesystem
regime:
Octopus,
Gassyfs,
etc.

?

17

put your #assignedhashtag here by setting the footer in view-header/footer● Perform well for wide range of data sizes
– A few KB to many GBs per storage object

● Support large data volumes
– Can’t keep all data in memory all the time

● Provide convenient abstractions for storing temporary
– Key-value, File, what else?

● Scalability

● Fault-tolerance, Durability
– Temporary data is short-lived, can we use coarse grained recovery?

Temporary Data Storage Requirements

18

put your #assignedhashtag here by setting the footer in view-header/footer● Perform well for wide range of data sizes
– A few KB to many GBs per storage object

● Support large data volumes
– Can’t keep all data in memory all the time

● Provide convenient abstractions for storing temporary
– Key-value, File, what else?

● Scalability

● Fault-tolerance, Durability
– Temporary data is short-lived, can we use coarse grained recovery?

Temporary Data Storage Requirements

19

put your #assignedhashtag here by setting the footer in view-header/footer● Perform well for wide range of data sizes
– A few KB to many GBs per storage object

● Support large data volumes
– Can’t keep all data in memory all the time

● Provide convenient abstractions for storing temporary
– Key-value, File, what else?

● Scalability

● Fault-tolerance, Durability
– Temporary data is short-lived, can we use coarse grained recovery?

Temporary Data Storage Requirements

20

put your #assignedhashtag here by setting the footer in view-header/footer● Perform well for wide range of data sizes
– A few KB to many GBs per storage object

● Support large data volumes
– Can’t keep all data in memory all the time

● Provide convenient abstractions for storing temporary
– Key-value, File, what else?

● Scalability

● Fault-tolerance, Durability
– Temporary data is short-lived, can we use coarse grained recovery?

Temporary Data Storage Requirements

21

put your #assignedhashtag here by setting the footer in view-header/footer● Perform well for wide range of data sizes
– A few KB to many GBs per storage object

● Support large data volumes
– Can’t keep all data in memory all the time

● Provide convenient abstractions for storing temporary
– Key-value, File, what else?

● Scalability

● Fault-tolerance, Durability
– Temporary data is short-lived, can we use coarse grained recovery?

Temporary Data Storage Requirements

22

put your #assignedhashtag here by setting the footer in view-header/footer

● Distributed storage architecture for temporary data

● Fusion of filesystem and key-value semantics

● Designed for high-performance hardware

NodeKernel

23

NodeKernel: Data Model

/shuffle
/part1
/map1

/shuffle
/part1
/map2

/shuffle
/part2
/map1

/shuffle
/part2
/map2

/cache
/key1

/cache
/key2

config shuffle

part1 part2

map1 map2 map1 map2

param1 param2

/ CreateNode()
LookupNode()
RemoveNode()
RenameNode()

24

NodeKernel: Data Model

/shuffle
/part1
/map1

/shuffle
/part1
/map2

/shuffle
/part2
/map1

/shuffle
/part2
/map2

/cache
/key1

/cache
/key2

config shuffle

part1 part2

map1 map2 map1 map2

param1 param2

/ CreateNode()
LookupNode()
RemoveNode()
RenameNode()

Node {
 AppendData()
 UpdateData()
 ReadData()
}

25

NodeKernel: Node Types

/shuffle
/part1
/map1

/shuffle
/part1
/map2

/shuffle
/part2
/map1

/shuffle
/part2
/map2

/cache
/key1

/cache
/key2

config shuffle

part1 part2

map1 map2 map1 map2

param1 param2

/ Directory : Node {
 Enumerate()
}
File : Node {
 Read()
 Append()
}

26

NodeKernel: Node Types

/shuffle
/part1
/map1

/shuffle
/part1
/map2

/shuffle
/part2
/map1

/shuffle
/part2
/map2

/cache
/key1

/cache
/key2

config shuffle

part1 part2

map1 map2 map1 map2

param1 param2

/ Table : Node {
 Put()
 Get()
}
KeyValue : Node {
 Append()
 Read();
}

27

NodeKernel: Node Types

/shuffle
/part1
/map1

/shuffle
/part1
/map2

/shuffle
/part2
/map1

/shuffle
/part2
/map2

/cache
/key1

/cache
/key2

config shuffle

part1 part2

map1 map2 map1 map2

param1 param2

/ Bag : Node {
 readSubtree()
}
File : Node {
 Read()
 Append()
}

28

NodeKernel: System Architecture

Storage
Class 1

Storage
Class 2

Storage
Class N

e.g., all
storage servers

with NVMe
Flash

/

foo bar Clients

Datacenter
Network

Application
View

29

NodeKernel: System Architecture

Metadata
Plane

Storage
Class 1

Storage
Class 2

Storage
Class N

e.g., all
storage servers

with NVMe
Flash

tree
structure,

tiering policy,
block mapping

/

foo bar Clients

Datacenter
Network

Application
View

30

NodeKernel: System Architecture

Metadata
Plane

Storage
Class 1

Storage
Class 2

Storage
Class N

e.g., all
storage servers

with NVMe
Flash

tree
structure,

tiering policy,
block mapping

/

foo bar Clients

Datacenter
Network

Application
View

hierarchical
Tiering:

fill higher
performing tiers

first

31

NodeKernel: System Architecture

Metadata
Plane

Storage
Class 1

Storage
Class 2

Storage
Class N

e.g., all
storage servers

with NVMe
Flash

tree
structure,

tiering policy,
block mapping

/

foo bar Clients

Datacenter
Network

Application
View

hierarchical
Tiering:

fill higher
performing tiers

first

hash
partitioned

storage
namespace

32

NodeKernel: System Architecture

Datacenter
Network

Metadata
Plane

Storage
Class 1

Storage
Class 2

Storage
Class N

e.g., all
storage servers

with NVMe
Flash

tree
structure,

tiering policy,
block mapping

/

foo bar Clients

metadata access

data access

Append()
Update()
Read()

Application
View

hierarchical
Tiering:

fill higher
performing tiers

first

hash
partitioned

storage
namespace

33

Example: KeyValue PUT

data write

Metadata
Servers Client

Storage
Servers

create

DRAM
block

create()

close()

client
buffer

append()

getblock

close

ack

NodeKernel

Client
KV

Server

Traditional KVS

PUT

ack

34

Example: KeyValue PUT

data write

Metadata
Servers Client

Storage
Servers

create

DRAM
block

create()

close()

client
buffer

append()

getblock

close

ack

NodeKernel

Client
KV

Server

Traditional KVS

PUT

ack
tiering

decision,
load

balancing

Separating metadata from data adds flexibility
but requires low-latency metadata operations

35

Example: KeyValue PUT

data write

Metadata
Servers Client

Storage
Servers

create

DRAM
block

create()

close()

client
buffer

append()

getblock

close

ack

NodeKernel

Client
KV

Server

Traditional KVS

PUT

ack
tiering

decision,
load

balancing

Separating metadata from data adds flexibility
but requires low- but requires low-latency metadata operationslatency metadata operations

36

put your #assignedhashtag here by setting the footer in view-header/footer● Implementation of the NodeKernel architecture

● Low-latency RDMA-based RPC between client and
metadata servers

● Two storage classes:
– Flash accessed via NVM-over-Fabrics

– DRAM accessed via RDMA

● Open source: crail.apache.org

Apache Crail

37

Pu, ur #assignedhashtag here by setting the footer in view-header/footer● 16 node cluster, machine hardware:
– 100 Gb/s RDMA RoCE

– 256 GB DRAM

– Intel Optane NVMe SSD

● Evaluation questions:
– Any size: how well is Crail performing for different object sizes?

– Modern hardware: are we able to accelerate workloads?

– Flexibility: what benefits we get by decoupling data processing and temporary data
storage?

– Abstractions: Are KeyValue, File and Bag abstractions helpful?

Evaluation

38

Small and Large Data Sets

Crail serves small and large data sets close to the hardware limit
(latency RDMA: 3us, latency Optane 15us, bandwidth RDMA: 100 Gb/s)

KeyValue GET (256B) File read (10GB)

39

Spark Shuffle using Crail::Bag
local
files

reduce
tasks

map
tasks

network
transfers

compute
cluster

40

Spark Shuffle using Crail::Bag

Crail
File Crail

Bag

append 2
sequential

read

1

reduce
tasks

map
tasks

compute
cluster

41

Spark GroupBy (80M keys, 4K)

Spark/
Vanilla

5x2.5x
2x

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100 110 120
T
h
ro

u
g
h
p
u
t

(G
b
it
/s

)
Elapsed time (seconds)

1 core
4 cores
8 cores

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100 110 120

T
h
ro

u
g
h
p
u
t

(G
b
it
/s

)

Elapsed time (seconds)

1 core
4 cores
8 cores

Spark/
Crail

Spark shuffling via Crail on a single core is 2x faster
than vanilla Spark on 8 cores per executor (8 executors)

42

Flexible Deployment

Crail

HDFS,
S3

HDFS,
S3

Data processing job

configuration

Disaggregation,
Flash/DRAM ratio,

RDMA, TCP,
NVM-of-Fabrics,

etc.

43

DRAM / Flash Ratio

Flexible deployment: Crail permits trading performance for cost

200GB Sorting

44

put your #assignedhashtag here by setting the footer in view-header/footer● Sharing temporary efficiently in data processing workloads is
challenging
– Inefficient in deployments with modern hardware

– Inflexible: difficult to use storage tiering, disaggregation, etc.

● NodeKernel: distributed storage architecture for temporary data
storage
– Fusion of Filesystem and Key-Value semantics in single storage namespace

● Apache Crail: Implementation of NodeKernel for RDMA and NVMf
– Accelerates temporary data storage on modern hardware

– Enable flexible deployment: storage tiering, disaggregation, etc.

Conclusions

45

put your #assignedhashtag here by setting the footer in view-header/footer● Crail:

https://github.com/apache/incubator-crail

● Crail shuffler:

https://github.com/zrlio/crail-spark-io

● YCSB benchmark:

https://github.com/brianfrankcooper/YCSB

(includes Crail)

Open Source

https://github.com/apache/incubator-crail
https://github.com/zrlio/crail-spark-io
https://github.com/brianfrankcooper/YCSB

46

Backup

47

YCSB Benchmark: GET Latency

1KB KV pairs: ~12us (DRAM) and 30us (NVMe)
100KB KV pairs: ~30us (DRAM) and 40us (NVMe)

48

Persistence & Fault Tolerance

● Data plane
– No replication

– Graceful handling of faulty or crashed storage servers

(signaled at client during read/write ops)

● Meta data plane
– Persist metadata state using operation logging

– Shutdown and replay log to re-create state

● Pluggable log device
– Current log is on local FS

– Could be a distributed log: maintain a hot standby
metadata server

clients

Metadata
server

Metadata
server

 RPC

log
operation

replay
log log interface

log
mplementation

49

Crail Data Plane

50

Crail Data Plane

1

1

asynchronous
API

51

Crail Data Plane

1

1

zero copy
data movement

asynchronous
API

52

Crail Data Plane

1

1

zero copy
data movement

asynchronous
API

direct
data placement

53

Crail Data Plane

1

1

transfer only
data requestedzero copy

data movement

asynchronous
API

direct
data placement

54

Crail Data Plane

1 2

1
2

transfer only
data requestedzero copy

data movement

asynchronous
API

direct
data placement

synchronous
call

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

