SmartDedup: Optimizing Deduplication for Resource-constrained Devices

Qirui Yang Runyu Jin Ming Zhao

qirui.yang@asu.edu, runyu.jin@asu.edu, mingzhao@asu.edu

Arizona State University

http://visa.lab.asu.edu

Virtualized Infrastructures, Systems, & Applications

Resource Management on Edge and IoT

- Data-intensive workloads

 Multitude of sensors
 Data-rich applications
 Multitasking systems
- Limited on-device storage

 Limited I/O performance
 Limited capacity
 Limited endurance

Deduplication to the Rescue?

• Well-known benefits

- \circ Eliminate redundant I/Os → improve performance
- \circ Reduce flash writes → improve endurance
- \circ Remove redundant data \rightarrow improve utilization
- Widely used in the cloud
 - $\,\circ\,$ Backup storage, primary storage, cache storage, ...
- But
 - \circ Is there enough data duplication in device workloads?
 - How to exploit it using limited resources on the device?

Smartphone Trace Analysis

- Real-world device workloads are indeed I/O intensive
- All workloads have a good level of duplicates

File system level traces collected from users from different countries

ID	Daily I/Os (GB)	Daily write (GB)	# of months	Duplication ratio (%)
1	12.1	1.4	6	21.9
2	9.1	2.1	3	45.3
3	5.9	1	2.5	23.2
4	16.5	2.4	5	47.5
5	12.2	2.8	3	41.6
6	10.6	2.4	2.1	28.3

Trace: http://visa.lab.asu.edu/traces

More In-depth Analysis

Five categories:

- Resource files (res)
- Database files (db)
- Executables (exe)
- Temporary files (tmp)
- Multimedia (media)

Top 3 duplicate contributors for the traces

More In-depth Analysis

- Duplicate sources differ by devices
- 80% of duplicates are from files that are not entirely duplicate
- System-level deduplication is necessary

Top 3 duplicate contributors for the traces

Challenges to Device Deduplication

• Limited memory

 Deduplication relies on the in-memory fingerprint store for quickly detecting duplicates

- Limited storage performance and endurance
 Deduplication incurs additional metadata operations
- Limited power and energy capacity

 $\,\circ\,$ Fingerprinting is CPU intensive and draws quite a bit of power

SmartDedup—A Smart Deduplication Solution for Smart Devices

- Cohesively designed two-level fingerprint stores
 - $\circ~$ On-disk store complements the small in-memory store
- Synergistically integrated hybrid deduplication
 Out-of-line deduplicates data skipped by in-line
- Dynamically adapted deduplication

 According to resource availability
 and workload characteristics

In-memory Fingerprint Store

- Store only important fingerprints
- Organized by a prefix tree
 - Index groups of fingerprints — small memory footprint
 - Support the two-level fingerprint store

On-disk Fingerprint Store

- Maintain fingerprints that are not in the in-memory store
- Share the same index with in-memory store
 - $\circ~\mbox{Save memory}$
 - Facilitate the fingerprint migration

Fingerprints Migration

- Fingerprints migrate between memory and disk on demand
- In-memory store keeps the most recently used fingerprints
- Fingerprints evicted by groups to save I/Os

Fingerprints Migration

- Fingerprints migrate between memory and disk on demand
- In-memory store keeps the most recently used fingerprints
- Fingerprints evicted by groups to save I/Os

Fingerprints Migration

- Fingerprints migrate between memory and disk on demand
- In-memory store keeps the most recently used fingerprints
- Fingerprints evicted by groups to save I/Os

Hybrid Deduplication

- In-line Deduplication
 - $\circ~$ Work in the I/O path
 - Immediately eliminate duplicate writes
 - Limited by the available resources on the device
- Out-of-line Deduplication
 - \circ Work in background
 - Slowly and thoroughly eliminate duplicate data
 - Limited improvement on performance and endurance

Write Path

SmartDedup

Read Path

- Native read path cannot utilize duplicate data in the page cache
 - Page cache is indexed by logical block numbers (LBNs)
 - $\,\circ\,$ Cannot avoid reads to different LBNs if the same data is already in the page cache

LBNy

Optimized Read Path

- Page Cache Index
 - $\,\circ\,$ Map from PBNs to the corresponding pages in page cache
 - $\,\circ\,$ Use this index to find data for reads with different LBNs

Adaptive Deduplication

- Based on resource availability
 - $\circ~$ Keep CPU and disk utilization under 100%
 - Proportional to available battery life
 - Completely disable deduplication in low battery state
- Based on the current duplication level
 - \circ Gradually reduce the rate if the duplication level is dropping
 - Quickly increase the rate if the duplication level is growing

Evaluation

- Prototypes

 EXT4 and F2FS (4KB fixed-size chunking)

 Testing devices
 - Nexus 5X and Raspberry Pi 3
- Benchmarks
 - FIO-intensive I/O benchmark
 - DEDISbench workloads from real-world device images
 - Real-world device traces
- Baselines
 - \circ Native EXT4 and F2FS
 - Dmdedup: block-level deduplication, flexible metadata backends [OLS 14']
 - CAFTL: deduplication for resource-constrained FTL layer [FAST 11']

	Nexus 5X	Raspberry Pi 3
CPU	Qualcomm Snapdragon 808	Broadcom BCM2837
RAM	2GB	1GB
Storage	32GB eMMC	16GB SDHC UHS-1
OS	Android Nougat	Raspbian Stretch Lite
Kernel	Linux 3.10	Linux 4.4
File System	EXT4	F2FS

FIO (on Nexus)

E.g., SmartDedup achieves 16.9% write speedup and 38.2% read speedup vs EXT4 with 25% of duplicates

SmartDedup

FIO (Resource Usage)

- Small CPU overhead (3.3%) vs. EXT4
- Save battery (49.2%) vs. F2FS
- Small memory footprint: 3.5MB

CPU Load

	I/O (GB)	Read/write ratio	Duplication ratio (%)
Mix 1	4	1	25
Mix 2	6	2	25

Battery usage

Trace Replay (on Nexus)

Adaptive Deduplication (on Nexus)

Adapting to duplication level of current workload

Conclusions

- Deduplication is important to smart devices—performance, utilization, endurance
- SmartDedup achieves significant performance and endurance improvement with low resource cost

• Trace: http://visa.lab.asu.edu/traces

- Acknowledgements
 - Colleagues @ the ASU VISA Lab
 National Science Foundation

• Welcome to SmartDedup's poster tonight 6:30pm

