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Our Observations: Resources & Data
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Trend: Diverse Characteristics
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In This Talk (See Paper for Others)
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(1) Cheap Transient Resources
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(2) Large-scale Data Shuffle
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(2) Large-scale Data Shuffle

e Many Disk Seeks!
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How to optimize
distributed execution?



Existing Approach: Direct Specialization
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Direct Specialization: Hard to Ensure...

(1) Correctness
Optimized execution produces the same results

(2) Reusability
Single specialization across different applications

(3) Composability
Combine multiple specialized optimizations
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Our goal:
Make it easy to optimize
distributed execution



Our Idea: Intermediate Representation (IR)

Apache Spark Apache Beam
WordCount WordCount

20



Our Idea: Intermediate Representation (IR)

Apache Spark Apache Beam

WordCount WordCount
e’ I’

IR shuffle
DAG @ ®

21



Our Idea: Intermediate Representation (IR)

Apache Spark Apache Beam
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Our Idea: Intermediate Representation (IR)
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Overall Workflow of
Apache Nemo



Nemo User Job Submission (Easy!)
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Application e.g., Spark/Beam Application
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Nemo Applies Compile-time Passes

Application

Nemo Compiler
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Nemo Applies Compile-time Passes
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Nemo Applies Compile-time Passes
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Nemo Applies Run-time Passes
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execution
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Nemo Applies Run-time Passes
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Nemo Applies Run-time Passes
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Example Apache Nemo
Optimization Passes



What A Pass Does

While traversing the input IR DAG,
(1) Inserts Utility Vertices

(2) Annotates Execution Properties
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What A Pass Does
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What A Pass Does

While traversing the input IR DAG,
(1) Inserts Utility Vertices

(2) Annotates Execution Properties

Scheduling/Communication



Passes We Implemented & Evaluated

GeoDistResourcePass
LargeShufflePass
TransientResourcePass
SkewCTPass

SkewRTPass
SkewSamplingPass
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In This Talk (See Paper for Others)

(1) LargeShufflePass

(2) TransientResourcePass

Both are

compile
time passes




(1) LargeShufflePass: Goal
Avoid on-disk data shuffle!

e Shuffle data in memory
e \\Write shuffled data to disks

e Read from disks sequentially
Related Work: Riffle (EuroSys18)
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(1) LargeShufflePass: Algorithm

for each shuffle edge e in 1irdag:
rv = RelayVertex (), irdag.insert (rv, e)

7\ | Utility ]
Vertex @ o o

Applies an identity functlon

@ shuffle @
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A
for each s

or eecn < Executlon Properties

rv.inkEdge.set (DataFlow.Push,
DataStore.Memory, Persistence.Discard)

a In-memory m Execute M

and Rela
shuffle shuffle, .-~ Y
concurrently
Push#
‘Memow,

@ shuffle Oone-to-o&a@ C Discard Oone-to-one
Relay Relay >®

Do not persist data in memory
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(1) LargeShufflePass: Algorithm

for each shuffle edge e in 1irdag:

rv = RelayVertex (), irdag.insert(rv, e)
rv.inkEdge.set (DataFlow.Push,
DataStore.Memory, Persistence.Discard)
rv.outFEdge.set (DataFlow.Pull, DataStore.Disk)

a R executes
after Relay
shuffle, shuffle,
Push, Push, one-to-one;
Memory, Memory, FﬁM’
@ Discard Oone-to-one @ Discard O Disk
Relay —> Relay A »®
Sequential

disk access



(1) LargeShufflePass: Correctness

shulffle,
Push, one-to-one,

Memory, Pull

@ shuffle ’® ] C Discard cRelay Disk >®

Original Optimized

Equivalent final outputs!
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(1) LargeShufflePass: Runtime Execution

Nemo .
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(1) LargeShufflePass: Runtime Execution
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(1) LargeShufflePass: Runtime Execution

Shuffled Data

Executor Executor

Distributed Storage Large Input Data
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(1) LargeShufflePass: Runtime Execution

Sequential Disk Access

Executor Executor
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Distributed Storage Large Input Data




(2) TransientResourcePass: Goal

Minimize recomputations!

Place on Transient/Reserved judiciously

Push data from Transient to Reserved
Related Work: Pado (EuroSys17)
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(2) TransientResourcePass: Algorithm

for each vertex v in topologicalSort (irdag):
1f (containsShuffle(v.inEdges) || ...):
v.set (ResourcePriority.Reserved)
else:
v.set (ResourcePrioritv.Transient)

A <

@ shuﬁle® @ shuﬁle®

Transient Reserved
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(2) TransientResourcePass: Algorithm

for each vertex v in topologicalSort (irdag):
1f (containsShuffle(v.inEdges) || ...):
v.set (ResourcePriority.Reserved)
else:
v.set (ResourcePriority.Transient)
for e 1in v.inEdges:
1f fromTransientToReserved(e.src, e.dst):
e.set (DataFlow.Push)

) e

@ shuﬁle® @ Push @

Transient Reserved Transient Reserved
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(2) TransientResourcePass: Corectness

shuffle,
shuffle — Push
@ g O J— ™ -®
Transient Reserved
Original Optimized

Equivalent final outputs!
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(2) TransientResourcePass: Runtime
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(2) TransientResourcePass: Runtime
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(2) TransientResourcePass: Runtime
Moves data out quickly

esource

Executor
®
< &

Distributed Storage S

Input Data
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LargeShufflePass+TransientResourcePass
@ shuffle ’®

{7 LargeShufflePass
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LargeShufflePass+TransientResourcePass
@ shuffle ’®

{7 LargeShufflePass

a

shuffle, shuffle,
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LargeShufflePass+TransientResourcePass

¥ {h; Correct & No Conflict

shuffle, shuffle,
Push, one-to-one, Push. one-to-one,
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Discard Disk : Disk
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Implementation
& Evaluation



7 Nemo Implementation

e Open source (https://nemo.apache.org)

e 32K lines of Java code, including its own runtime

e (Good integration with other Apache Big Data projects
o Supported applications

j Apache o aracus <AZ

Beam pQ[’ )

o Supported cluster resource managers

3@{4"‘%%9@9 éé VIXYerl (thanks to # REEF)
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What We Evaluated: Scenarios
Large Data Shuffle

Transient Resources
Geo-distributed Resources
Skewed Data
Large Shuffle on Transient Resources
Skewed Data on Geo-distributed Resources

Large Shuffle with Skewed Data
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In This Talk (See Paper for Others)
Large Data Shuffle

Transient Resources
Geo-distributed Resources
Skewed Data
Large Shuffle on Transient Resources
Skewed Data on Geo-distributed Resources

Large Shuffle with Skewed Data
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What We Evaluated: Systems

Apache Nemo
Apache Spark: A state-of-the-art runtime
Pado (EuroSys17): Specialized for transient resources
Hurricane (EuroSys18): Specialized for data skew

Iridium (SIGCOMM15): Specialized for geo analytics
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In This Talk (See Paper for Others)

Apache Nemo
Apache Spark: A state-of-the-art runtime
Pado (EuroSys17): Specialized for transient resources
Hurricane (EuroSys18): Specialized for data skew

Iridium (SIGCOMM15): Specialized for geo analytics
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Large Shuffle (Lower is Better)
= MapReduce on 20 AWS EC2 h1.4xlarge instances
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Large Shuffle (Lower is Better)
= MapReduce on 20 AWS EC2 h1.4xlarge instances

B Reduce m Map
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Transient Resources (Lower is Better)
= ALS on 10 transient + 2 reserved EC2 instances

Job completion time (m)

®m Nemo B Spark Pado(EuroSys17)
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Low Eviction Med Eviction High Eviction
(60m) (40m) (20m)

Eviction rate (Mean time to eviction)
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Transient Resources (Lower is Better)
= ALS on 10 transient + 2 reserved EC2 instances

B Nemo B Spark Pado(EuroSys17)
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Large Shuffle on Transient Resources

= 1TB MapReduce on 10 transient + 10 reserved
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Large Shufﬂe on Tran3|ent Resources

19
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N
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Out of memary

Job completion Time (m)
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DefaultPass TransientPass LargeShufflePass TransientPass +
LargeShufflePass
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Summary: Apache Nemo

Problem: Make it easy to optimize distributed dataflows

Solution: Optimization passes that transform an

intermediate representation (IR) DAG

Result

o Nemo outperforms a state-of-the-art Apache Spark
with clean and simple optimization passes

o Nemo is on par with specialized runtimes

o Nemo further improves performance for scenarios with
combined resource and data characteristics
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Nemo

https://nemo.apache.org
https://github.com/apache/incubator-nemo

Build Your Own Passes,
For Your Dataflow Research!
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