
Apache Nemo: A Framework for Building
Distributed Dataflow Optimization Policies

Youngseok Yang1 Jeongyoon Eo1 Geon-Woo Kim2 Joo Yeon Kim3
Sanha Lee4 Jangho Seo1 Won Wook Song1 Byung-Gon Chun1

1Seoul National University 2Viva Republica 3Samsung Electronics 4Naver Corp.

1

Execution of Distributed WordCount

2

dataSet.map(word ⇒ (word, 1))
 .reduceByKey((l, r) ⇒ l + r)Application

Execution of Distributed WordCount

3

dataSet.map(word ⇒ (word, 1))
 .reduceByKey((l, r) ⇒ l + r)Application

Compiler
M

M

R

R
Runtime
DAG

Execution of Distributed WordCount

4

dataSet.map(word ⇒ (word, 1))
 .reduceByKey((l, r) ⇒ l + r)Application

Compiler

Runtime

M

M

R

R
Runtime
DAG

Master

Executor Executor

Execution of Distributed WordCount

5

Master Scheduler Runtime DAG

Distributed Storage Input Data

Datacenter ResourceDatacenter Resource

Execution of Distributed WordCount

6

Master

Executor

Scheduler

Executor

M M

Runtime DAG

Distributed Storage Input Data

Datacenter ResourceDatacenter Resource

Execution of Distributed WordCount

7

Master

Executor

Scheduler

Executor

Distributed Storage

M M

Runtime DAG

Input Data

Channel Channel

Datacenter ResourceDatacenter Resource

Execution of Distributed WordCount

8

Master

Executor

Scheduler

Executor

M M

Runtime DAG

R R
Channel Channel

Distributed Storage Input Data

Datacenter ResourceDatacenter Resource

Our Observations: Resources & Data

9

Master

Executor

Scheduler

Channel Executor

Distributed Storage

Channel

M M

Runtime DAG

Input Data

R R

Trend: Diverse Characteristics

10

Datacenter Resources Input Data
Geographically

-distributed

Cheap transient Skewed

Large-scale

In This Talk (See Paper for Others)

11

Input DataDatacenter Resources
Geographically

-distributed

(1) Cheap transient Skewed

(2) Large-scale

Reserved ResourceTransient Resource

12

Master

Executor

Scheduler

Channel ExecutorChannel

M M

Runtime DAG

R R

Distributed Storage Input Data

(1) Cheap Transient Resources

Reserved ResourceTransient Resource

13

Master

Executor

Scheduler

Channel ExecutorChannel

M M

Runtime DAG

R R

Distributed Storage Input Data

Resource
Eviction!

(1) Cheap Transient Resources

14

Datacenter ResourceDatacenter Resource

14

Master

Executor

Scheduler

Channel ExecutorChannel

Runtime DAG

Distributed Storage Large Input Data

M

RR

M

(2) Large-scale Data Shuffle

(2) Large-scale Data Shuffle

15

Datacenter ResourceDatacenter Resource

15

Master

Executor

Scheduler

Channel ExecutorChannel

Runtime DAG

Distributed Storage Large Input Data

M

RR

M

Disk Seeks!Many Disk Seeks!

How to optimize
distributed execution?

16

Existing Approach: Direct Specialization

17

Datacenter ResourceDatacenter Resource

17

Master

Executor

Specialized
Scheduler

Executor

Runtime DAG

Specialized
Channel

Specialized
Channel

Scheduling

CommunicationCommunication

 Direct Specialization: Hard to Ensure...

1818

(1) Correctness
Optimized execution produces the same results

(2) Reusability
Single specialization across different applications

(3) Composability
Combine multiple specialized optimizations

Our goal:
Make it easy to optimize

distributed execution
19

Our Idea: Intermediate Representation (IR)

2020

Apache Spark
WordCount

Apache Beam
WordCount

….

Our Idea: Intermediate Representation (IR)

2121

M RIR
DAG

shuffle

Apache Spark
WordCount

Apache Beam
WordCount

….

Our Idea: Intermediate Representation (IR)

2222

M RIR
DAG

shuffle

Apache Spark
WordCount

Apache Beam
WordCount

….

Optimization Pass
f: irdag → irdag′

Easy! (Think Functions)

Our Idea: Intermediate Representation (IR)

2323

M

M

R

R

Runtime
DAG

Master
Executor Executor

M RIR
DAG

shuffle

Apache Spark
WordCount

Apache Beam
WordCount

….

Optimized

Optimization Pass
f: irdag → irdag′

Overall Workflow of
Apache Nemo

24

Nemo User Job Submission (Easy!)

25

Pass
C1

Pass
C2

Pass
C3

Pass
R1

Compile-time Passes
(List)

Run-time Passes
(Set)

e.g., Spark/Beam Application

[
{

], ,
}

Application

Nemo Applies Compile-time Passes

26

Application

Nemo Compiler

27

Application

Nemo Compiler

Nemo Applies Compile-time Passes

irdag

28

Pass
C1

Application

Nemo Compiler

Check correctness of
the output IR DAG

Nemo Applies Compile-time Passes

irdag

29

Pass
C1

Application

Pass
C2

Nemo Compiler

Check correctness &
Check conflict with C1

Nemo Applies Compile-time Passes

irdag

30

Pass
C1

Application

Pass
C2

Pass
C3

Nemo Compiler

Check correctness &
Check conflict with C1+C2

Nemo Applies Compile-time Passes

irdag

31

Pass
C1

irdag′
(optimized)

Application

Pass
C2

Pass
C3

Nemo Compiler

Nemo Runtime
Runtime

DAG′
(optimized)If all checks pass

Nemo Applies Compile-time Passes

irdag

irdag

32

Pass
C1

irdag′
(optimized)

Application

Pass
C2

Pass
C3

Nemo Compiler

Nemo Runtime

Master

Executor

Runtime
DAG′

(optimized)
Nemo Scheduler

Nemo Channel

Reflects the
optimizations

Nemo Applies Compile-time Passes

33

Application

Nemo Compiler

Nemo Runtime

Master

Executor

Nemo Scheduler

Nemo Channel

Nemo Applies Run-time Passes

Message

During job
execution

34

irdag′′
(optimized more)

Application

Nemo Compiler

Nemo Runtime

Master

Executor

Nemo Scheduler

Nemo Channel

Nemo Applies Run-time Passes

Pass
R1

irdag′
(optimized)

Message Correctness &
Conflict checks

35

Application

Nemo Compiler

Nemo Runtime

Master

Executor

Nemo Scheduler

Nemo Channel

Nemo Applies Run-time Passes

Pass
R1

irdag′
(optimized)

Message
Runtime

DAG′′
(optimized more)

irdag′′
(optimized more)

Updates lazily
for correctness

Example Apache Nemo
Optimization Passes

36

What A Pass Does

37

While traversing the input IR DAG,

(1) Inserts Utility Vertices

(2) Annotates Execution Properties

What A Pass Does

38

While traversing the input IR DAG,

(1) Inserts Utility Vertices

(2) Annotates Execution Properties

Applies a specific function

What A Pass Does

39

While traversing the input IR DAG,

(1) Inserts Utility Vertices

(2) Annotates Execution Properties

Scheduling/Communication

Passes We Implemented & Evaluated

40

GeoDistResourcePass

LargeShufflePass

TransientResourcePass

SkewCTPass

SkewRTPass

SkewSamplingPass

41

GeoDistResourcePass

(1) LargeShufflePass

(2) TransientResourcePass

SkewCTPass

SkewRTPass

SkewSamplingPass

In This Talk (See Paper for Others)

Both are
compile

time passes

42

(1) LargeShufflePass: Goal

Avoid on-disk data shuffle!

● Shuffle data in memory

● Write shuffled data to disks

● Read from disks sequentially

Related Work: Riffle (EuroSys18)

43

for each shuffle edge e in irdag:
 rv = RelayVertex(), irdag.insert(rv, e)

(1) LargeShufflePass: Algorithm

M R
shuffle

RelayM R
shuffle one-to-one

Applies an identity function

Utility
Vertex

44

for each shuffle edge e in irdag:
 rv = RelayVertex(), irdag.insert(rv, e)
 rv.inEdge.set(DataFlow.Push,
 DataStore.Memory, Persistence.Discard)

(1) LargeShufflePass: Algorithm

RelayM R
shuffle one-to-one

RelayM R

shuffle,
Push,

Memory,
Discard one-to-one

Do not persist data in memory

In-memory
shuffle

Execute M
and Relay
concurrently

Execution Properties

45

for each shuffle edge e in irdag:
 rv = RelayVertex(), irdag.insert(rv, e)
 rv.inEdge.set(DataFlow.Push,
 DataStore.Memory, Persistence.Discard)
 rv.outEdge.set(DataFlow.Pull, DataStore.Disk)

(1) LargeShufflePass: Algorithm

RelayM R

shuffle,
Push,

Memory,
Discard one-to-one

RelayM R

shuffle,
Push,

Memory,
Discard

one-to-one,
Pull
Disk

R executes
after Relay

Sequential
disk access

46

(1) LargeShufflePass: Correctness

RelayM R

shuffle,
Push,

Memory,
Discard

one-to-one,
Pull
Disk

M R
shuffle

Original Optimized

Equivalent final outputs!

=

4747

Master

Executor

Nemo
Scheduler

Nemo
Channel

ExecutorNemo
Channel

Runtime DAG

Distributed Storage Large Input Data

(1) LargeShufflePass: Runtime Execution

M

Relay

M

Relay

4848

Master

Executor

Scheduler

Nemo
Channel

ExecutorNemo
Channel

Runtime DAG

Distributed Storage Large Input Data

M

Relay

(1) LargeShufflePass: Runtime Execution

Memory+Discard Shuffle

M

Relay

4949

Executor Nemo Channel ExecutorNemo Channel

Distributed Storage Large Input Data

M

Relay

(1) LargeShufflePass: Runtime Execution
Master Nemo

Scheduler

M

Relay

Disk Seeks!Shuffled Data

5050

Executor Nemo Channel ExecutorNemo Channel

Distributed Storage Large Input Data

(1) LargeShufflePass: Runtime Execution
Master Nemo

Scheduler

R R

Disk Seeks!Sequential Disk Access

51

(2) TransientResourcePass: Goal
Minimize recomputations!

● Place on Transient/Reserved judiciously

● Push data from Transient to Reserved

Related Work: Pado (EuroSys17)

52

(2) TransientResourcePass: Algorithm
for each vertex v in topologicalSort(irdag):
 if (containsShuffle(v.inEdges) || ...):
 v.set(ResourcePriority.Reserved)
 else:
 v.set(ResourcePriority.Transient)

M R
shuffle

M R
shuffle

Transient Reserved

53

(2) TransientResourcePass: Algorithm
for each vertex v in topologicalSort(irdag):
 if (containsShuffle(v.inEdges) || ...):
 v.set(ResourcePriority.Reserved)
 else:
 v.set(ResourcePriority.Transient)
 for e in v.inEdges:
 if fromTransientToReserved(e.src, e.dst):
 e.set(DataFlow.Push)

M R

shuffle,
Push

Transient Reserved
M R

shuffle

Transient Reserved

54

(2) TransientResourcePass: Corectness

M R
shuffle

Original

Equivalent final outputs!

= M R

shuffle,
Push

Transient Reserved

Optimized

55

(2) TransientResourcePass: Runtime

Reserved ResourceTransient Resource

Master

Executor

Scheduler

Channel ExecutorChannel

M R

Runtime DAG

M R

Distributed Storage Input Data

56

(2) TransientResourcePass: Runtime

Reserved ResourceTransient Resource

Master

Executor

Scheduler

Channel ExecutorChannel

M R

Runtime DAG

M R

Distributed Storage Input Data

57

(2) TransientResourcePass: Runtime

Reserved ResourceTransient Resource

Master

Executor

Scheduler

Channel ExecutorChannel

M R

Runtime DAG

M R

Distributed Storage Input Data

Moves data out quickly

58

LargeShufflePass+TransientResourcePass

RelayM R

shuffle,
Push,

Memory,
Discard

one-to-one,
Pull,
Disk

M R
shuffle

LargeShufflePass

59

LargeShufflePass+TransientResourcePass
M R

shuffle

RelayM R

shuffle,
Push,

Memory,
Discard

one-to-one,
Pull
Disk

LargeShufflePass

TransientResourcePass

Transient Reserved Reserved

RelayM R

shuffle,
Push,

Memory,
Discard

one-to-one,
Pull,
Disk

60

LargeShufflePass+TransientResourcePass
M R

shuffle

RelayM R

shuffle,
Push,

Memory,
Discard

one-to-one,
Pull
Disk

LargeShufflePass

TransientResourcePass

Transient Reserved Reserved

Correct & No Conflict

RelayM R

shuffle,
Push,

Memory,
Discard

one-to-one,
Pull,
Disk

61

Implementation
& Evaluation

● Open source (https://nemo.apache.org)
● 32K lines of Java code, including its own runtime
● Good integration with other Apache Big Data projects

○ Supported applications
○
○
○ Supported cluster resource managers

62

Implementation

(thanks to)

Large Data Shuffle

Transient Resources

Geo-distributed Resources

Skewed Data

Large Shuffle on Transient Resources

Skewed Data on Geo-distributed Resources

Large Shuffle with Skewed Data
63

What We Evaluated: Scenarios

64

In This Talk (See Paper for Others)
Large Data Shuffle

Transient Resources

Geo-distributed Resources

Skewed Data

Large Shuffle on Transient Resources

Skewed Data on Geo-distributed Resources

Large Shuffle with Skewed Data

Apache Nemo

Apache Spark: A state-of-the-art runtime

Pado (EuroSys17): Specialized for transient resources

Hurricane (EuroSys18): Specialized for data skew

Iridium (SIGCOMM15): Specialized for geo analytics

65

What We Evaluated: Systems

Apache Nemo

Apache Spark: A state-of-the-art runtime

Pado (EuroSys17): Specialized for transient resources

Hurricane (EuroSys18): Specialized for data skew

Iridium (SIGCOMM15): Specialized for geo analytics

66

In This Talk (See Paper for Others)

67

Large Shuffle (Lower is Better)

512GB 1TB 2TB
Nemo Spark Nemo Spark Nemo Spark

Input data size

⇒ MapReduce on 20 AWS EC2 h1.4xlarge instances

68

Large Shuffle (Lower is Better)

512GB 1TB 2TB
Nemo Spark Nemo Spark Nemo Spark

Input data size

⇒ MapReduce on 20 AWS EC2 h1.4xlarge instances

Outperforms
Spark

69

Transient Resources (Lower is Better)
⇒ ALS on 10 transient + 2 reserved EC2 instances

70

Transient Resources (Lower is Better)
⇒ ALS on 10 transient + 2 reserved EC2 instances

On par with Pado

71

Large Shuffle on Transient Resources

O
ut

 o
f m

em
or

y

⇒ 1TB MapReduce on 10 transient + 10 reserved

72

Large Shuffle on Transient Resources

O
ut

 o
f m

em
or

y

⇒ 1TB MapReduce on 10 transient + 10 reserved

Further improves perf

● Problem: Make it easy to optimize distributed dataflows
● Solution: Optimization passes that transform an

intermediate representation (IR) DAG
● Result

○ Nemo outperforms a state-of-the-art Apache Spark
with clean and simple optimization passes

○ Nemo is on par with specialized runtimes
○ Nemo further improves performance for scenarios with

combined resource and data characteristics
73

Summary: Apache Nemo

74

https://nemo.apache.org

Build Your Own Passes,
For Your Dataflow Research!

https://github.com/apache/incubator-nemo

