Apache Nemo: A Framework for Building
Distributed Dataflow Optimization Policies

Youngseok Yang' Jeongyoon Eo' Geon-Woo Kim? Joo Yeon Kim?3
Sanha Lee* Jangho Seo’ Won Wook Song’ Byung-Gon Chun’

'Seoul National University 2Viva Republica *Samsung Electronics “Naver Corp.

Execution of Distributed WordCount

dataSet.map(word = (word, 1))

Application reduceByKey((l, r) = | +r)

Execution of Distributed WordCount

dataSet.map(word = (word, 1))
reduceByKey((l, r) = | +r)
e’ l’

. M (R) Runtime
Compiler DAG

Application

Execution of Distributed WordCount
dataSet.map(word = (word, 1))

Application reduceByKey((l, r) = | +r)
el l’
| M R) Runtime
Compiler DAG
el l’
Master
Runtime

Executor Executor

Execution of Distributed WordCount

Master |Scheduler |Runtime DAG

Distributed Storage Input Data

Execution of Distributed WordCount

Master |Scheduler |Runtime DAG

Datacenter Resource . Datacenter Resource

Executor : : Executor

Distributed Storage Input Data

Execution of Distributed WordCount

Master |Scheduler |Runtime DAG

Datacenter Resource . Datacenter Resource

Executor Channel Il Channel Executor

Distributed Storage Input Data

Execution of Distributed WordCount

Master

Scheduler

Runtime DAG

Datacenter Resource -

®

Executor Channel

‘

. Datacenter Resource

Channel Executor

Distributed Storage

Input Data

Our Observations: Resources & Data

Master

Scheduler

Runtime DAG

Datacenter Resource -

®

Executor Channel

‘

. Datacenter Resource

Channel Executor

Distributed Storage

Input Data

Trend: Diverse Characteristics

Datacenter Resources Input Data

Geographically

-distributed Large-scale

Cheap transient Skewed

10

In This Talk (See Paper for Others)

Datacenter Resources Input Data

(2) Large-scale

(1) Cheap transient

11

(1) Cheap Transient Resources

Master |Scheduler |Runtime DAG

Transient Resource - Reserved Resource
Executor Channel Il Channel Executor
: a1l

Distributed Storage Input Data

12

(1) Cheap Transient Resources

Master |Scheduler |Runtime DAG

Distributed Storage Input Data

13

(2) Large-scale Data Shuffle

Master |Scheduler |Runtime DAG

Datacenter Resource . Datacenter Resource

Executor | Channel |l 1| Channel Executor

(W~

Distributed Storage Large Input Data

14

(2) Large-scale Data Shuffle

e Many Disk Seeks!

Executor
(®
(@)

- | Executor

Distributed Storage Large Input Data

15

How to optimize
distributed execution?

Existing Approach: Direct Specialization

Specialized _
Scheduler Runtime DAG

Master

esource

- . Executor
Specialized Specialized

Channel Channel

Direct Specialization: Hard to Ensure...

(1) Correctness
Optimized execution produces the same results

(2) Reusability
Single specialization across different applications

(3) Composability
Combine multiple specialized optimizations

18

Our goal:
Make it easy to optimize
distributed execution

Our Idea: Intermediate Representation (IR)

Apache Spark Apache Beam
WordCount WordCount

20

Our Idea: Intermediate Representation (IR)

Apache Spark Apache Beam

WordCount WordCount
e’ I’

IR shuffle
DAG @ ®

21

Our Idea: Intermediate Representation (IR)

Apache Spark Apache Beam

WordCount WordCount
e’

)

IR shuffle Optimization Pass
DAG @ >@) f: irdag — irdag’

Easy! (Think Functlons)

Our Idea: Intermediate Representation (IR)

Apache Spark
WordCount

Apache Beam
WordCount

é

IR shuffle
DAG @ ®)

Optimization Pass
f: irdag — irdag’

é

Runtime (M (R)
DAG M @ S

e

| Master |

Executor

Optimized

Executor

23

Overall Workflow of
Apache Nemo

Nemo User Job Submission (Easy!)

[

Application e.g., Spark/Beam Application
@Pass) @PaSS) @PaSS) Compile-time Passes
C1 |y] C2 |y C3] (List)
{ | Pass)} Run-time Passes
R1 (Set)

25

Nemo Applies Compile-time Passes

Application

Nemo Compiler

26

Nemo Applies Compile-time Passes

Application
M

4} Nemo Compiler

irdag

Nemo Applies Compile-time Passes
Application

4} Nemo Compiler

irdag IZDJ Pass

Check correctness of

the output IR DAG

Nemo Applies Compile-time Passes
Application

4} Nemo Compiler

irdag IZDJ Pass

Check correctness &

Check conflict with C1

Nemo Applies Compile-time Passes
Application

Nemo Compller

o
Sk

s
I rdag |:>J Pass

Check correctness &

Check conflict with C1+C2

Nemo Applies Compile-time Passes
Application

Nemo Compiler
|:> irdag’
(optimized)

N emo Compile
rdag |:>J Pass |:>J Pé];s |:>J Pél:sas :

I Nemo Runtime * <7
Runtime
DAG'
If all checks pass (optimized)

31

Nemo Applies Compile-time Passes
Application

Reflects the mpnerp
optimizations |,

)|:> irdag’
(optimized)

A
emo Runtime <7
Runtime
Master emo Scheduler <:| DAG'
(optimized)
Executor Nemo Channel

32

Nemo Applies Run-time Passes

Application
During job
execution
T Nemo Runtime
Master Nemo Scheduler

Executor Nemo Channel

33

Nemo Applies Run-time Passes
Application

Nemo Compiler

irdag’ Irdag”
optlmlzed) R1 (optimized more)

T— Correctness &

Master
Conflict checks

Executor

Nemo Applies Run-time Passes
Application

Updates lazily -

for correctness | ©etm<d rge)

Message

Master

Runtime
DAG"
(optimized more)

Nemo Scheduler

Executor Nemo Channel

35

Example Apache Nemo
Optimization Passes

What A Pass Does

While traversing the input IR DAG,
(1) Inserts Utility Vertices

(2) Annotates Execution Properties

37

What A Pass Does

Applies a speci

fic function

(1) Inserts Utility Vertices

(2) Annotates Execution Properties

What A Pass Does

While traversing the input IR DAG,
(1) Inserts Utility Vertices

(2) Annotates Execution Properties

Scheduling/Communication

Passes We Implemented & Evaluated

GeoDistResourcePass
LargeShufflePass
TransientResourcePass
SkewCTPass

SkewRTPass
SkewSamplingPass

40

In This Talk (See Paper for Others)

(1) LargeShufflePass

(2) TransientResourcePass

Both are

compile
time passes

(1) LargeShufflePass: Goal
Avoid on-disk data shuffle!

e Shuffle data in memory
e \\Write shuffled data to disks

e Read from disks sequentially
Related Work: Riffle (EuroSys18)

42

(1) LargeShufflePass: Algorithm

for each shuffle edge e in 1irdag:
rv = RelayVertex (), irdag.insert (rv, e)

7\ | Utility]
Vertex @ o o

Applies an identity functlon

@ shuffle @

43

A
for each s

or eecn < Executlon Properties

rv.inkEdge.set (DataFlow.Push,
DataStore.Memory, Persistence.Discard)

a In-memory m Execute M

and Rela
shuffle shuffle, .-~ Y
concurrently
Push#
‘Memow,

@ shuffle Oone-to-o&a@ C Discard Oone-to-one
Relay Relay >®

Do not persist data in memory

44

(1) LargeShufflePass: Algorithm

for each shuffle edge e in 1irdag:

rv = RelayVertex (), irdag.insert(rv, e)
rv.inkEdge.set (DataFlow.Push,
DataStore.Memory, Persistence.Discard)
rv.outFEdge.set (DataFlow.Pull, DataStore.Disk)

a R executes
after Relay
shuffle, shuffle,
Push, Push, one-to-one;
Memory, Memory, FﬁM’
@ Discard Oone-to-one @ Discard O Disk
Relay —> Relay A »®
Sequential

disk access

(1) LargeShufflePass: Correctness

shulffle,
Push, one-to-one,

Memory, Pull

@ shuffle ’®] C Discard cRelay Disk >®

Original Optimized

Equivalent final outputs!

46

(1) LargeShufflePass: Runtime Execution

Nemo .
Master Scheduler Runtime DAG
Executor Nemo Nemo Executor
(G Channel Channel (Ge=

Distributed Storage Large Input Data

47

(1) LargeShufflePass: Runtime Execution

Memory+Discard Shuffle

Executor Nemo
Channel

Nemo
Channel

Executor

Distributed Storage

Large Input Data

48

(1) LargeShufflePass: Runtime Execution

Shuffled Data

Executor Executor

Distributed Storage Large Input Data

49

(1) LargeShufflePass: Runtime Execution

Sequential Disk Access

Executor Executor
(((R)=— (@

Distributed Storage Large Input Data

(2) TransientResourcePass: Goal

Minimize recomputations!

Place on Transient/Reserved judiciously

Push data from Transient to Reserved
Related Work: Pado (EuroSys17)

51

(2) TransientResourcePass: Algorithm

for each vertex v in topologicalSort (irdag):
1f (containsShuffle(v.inEdges) || ...):
v.set (ResourcePriority.Reserved)
else:
v.set (ResourcePrioritv.Transient)

A <

@ shuﬁle® @ shuﬁle®

Transient Reserved

52

(2) TransientResourcePass: Algorithm

for each vertex v in topologicalSort (irdag):
1f (containsShuffle(v.inEdges) || ...):
v.set (ResourcePriority.Reserved)
else:
v.set (ResourcePriority.Transient)
for e 1in v.inEdges:
1f fromTransientToReserved(e.src, e.dst):
e.set (DataFlow.Push)

) e

@ shuﬁle® @ Push @

Transient Reserved Transient Reserved

53

(2) TransientResourcePass: Corectness

shuffle,
shuffle — Push
@ g O J— ™ -®
Transient Reserved
Original Optimized

Equivalent final outputs!

54

(2) TransientResourcePass: Runtime

Master |Scheduler |Runtime DAG

Transient Resource - Reserved Resource
Executor | Channel |l 1| Channel Executor

Distributed Storage Input Data

55

(2) TransientResourcePass: Runtime

Master |Scheduler |Runtime DAG

Transient Resource - Reserved Resource

Executor Channel Il Channel Executor

Distributed Storage S Input Data

56

(2) TransientResourcePass: Runtime
Moves data out quickly

esource

Executor
®
< &

Distributed Storage S

Input Data

57

LargeShufflePass+TransientResourcePass
@ shuffle ’®

{7 LargeShufflePass

a

shuffle,
Push, one-to-one,
Memory, Pull,

®Discard Rcelay Disk @

58

LargeShufflePass+TransientResourcePass
@ shuffle ’®

{7 LargeShufflePass

a

shuffle, shuffle,
Push, one-to-one, Push. one-to-one,

MemOW, PU”, Memory’ PU”
Discard Disk : Disk
@——0@ E> L) ——@

Transient Reserved Reserved

TransientResourcePass

a

59

LargeShufflePass+TransientResourcePass

¥ {h; Correct & No Conflict

shuffle, shuffle,
Push, one-to-one, Push. one-to-one,

MemOW, PU”, Memory’ PU”
Discard Disk : Disk
@——0@ E[> L) ——@

Transient Reserved Reserved

TransientResourcePass

a

60

Implementation
& Evaluation

7 Nemo Implementation

e Open source (https://nemo.apache.org)

e 32K lines of Java code, including its own runtime

e (Good integration with other Apache Big Data projects
o Supported applications

j Apache o aracus <AZ

Beam pQ[’)

o Supported cluster resource managers

3@{4"‘%%9@9 éé VIXYerl (thanks to # REEF)

62

What We Evaluated: Scenarios
Large Data Shuffle

Transient Resources
Geo-distributed Resources
Skewed Data
Large Shuffle on Transient Resources
Skewed Data on Geo-distributed Resources

Large Shuffle with Skewed Data

63

In This Talk (See Paper for Others)
Large Data Shuffle

Transient Resources
Geo-distributed Resources
Skewed Data
Large Shuffle on Transient Resources
Skewed Data on Geo-distributed Resources

Large Shuffle with Skewed Data

64

What We Evaluated: Systems

Apache Nemo
Apache Spark: A state-of-the-art runtime
Pado (EuroSys17): Specialized for transient resources
Hurricane (EuroSys18): Specialized for data skew

Iridium (SIGCOMM15): Specialized for geo analytics

65

In This Talk (See Paper for Others)

Apache Nemo
Apache Spark: A state-of-the-art runtime
Pado (EuroSys17): Specialized for transient resources
Hurricane (EuroSys18): Specialized for data skew

Iridium (SIGCOMM15): Specialized for geo analytics

66

Large Shuffle (Lower is Better)
= MapReduce on 20 AWS EC2 h1.4xlarge instances

® Reduce m Map

E 100
()]
= 735
=
2 50
kT,
£
E 25
(&)
0
(@)
[

Nemo Spark Nemo Spark Nemo Spark
512GB 1TB 2TB
Input data size

Large Shuffle (Lower is Better)
= MapReduce on 20 AWS EC2 h1.4xlarge instances

B Reduce m Map

e "7 Outperforms
: " Spark

E 50

g 25

Nemo Spark Nemo Spark Nemo Spark
512GB 1TB 2TB
Input data size

Transient Resources (Lower is Better)
= ALS on 10 transient + 2 reserved EC2 instances

Job completion time (m)

®m Nemo B Spark Pado(EuroSys17)

60

40

20

Low Eviction Med Eviction High Eviction
(60m) (40m) (20m)

Eviction rate (Mean time to eviction)
69

Transient Resources (Lower is Better)
= ALS on 10 transient + 2 reserved EC2 instances

B Nemo B Spark Pado(EuroSys17)

60

40

20

0

Job completion time (m)

Low EV|ct|on MedEvuctlon Hig

var with Pado

70

Large Shuffle on Transient Resources

= 1TB MapReduce on 10 transient + 10 reserved

100
— =
= 75 C
> @]
E qEJ
F_
§ £
[5] Y—
a @
£ 25 -+
3 >
S O
E 0

DefaultPass TransientPass LargeShufflePass TransientPass +

LargeShufflePass

71

Large Shufﬂe on Tran3|ent Resources

19

(o))
o

N
o

Out of memary

Job completion Time (m)

o

DefaultPass TransientPass LargeShufflePass TransientPass +
LargeShufflePass

72

Summary: Apache Nemo

Problem: Make it easy to optimize distributed dataflows

Solution: Optimization passes that transform an

intermediate representation (IR) DAG

Result

o Nemo outperforms a state-of-the-art Apache Spark
with clean and simple optimization passes

o Nemo is on par with specialized runtimes

o Nemo further improves performance for scenarios with
combined resource and data characteristics

73

Nemo

https://nemo.apache.org
https://github.com/apache/incubator-nemo

Build Your Own Passes,
For Your Dataflow Research!

74

