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Execution of Distributed WordCount
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Trend: Diverse Characteristics
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In This Talk (See Paper for Others)
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(2) Large-scale Data Shuffle
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How to optimize 
distributed execution?

16



Existing Approach: Direct Specialization
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 Direct Specialization: Hard to Ensure...
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(1) Correctness
Optimized execution produces the same results

(2) Reusability
Single specialization across different applications

(3) Composability
Combine multiple specialized optimizations



Our goal:
Make it easy to optimize 

distributed execution
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Our Idea: Intermediate Representation (IR)
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Our Idea: Intermediate Representation (IR)
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Easy! (Think Functions)



Our Idea: Intermediate Representation (IR)
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Overall Workflow of 
Apache Nemo
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Nemo User Job Submission (Easy!)
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Nemo Applies Compile-time Passes
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Example Apache Nemo
Optimization Passes
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What A Pass Does
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While traversing the input IR DAG,

(1) Inserts Utility Vertices 

(2) Annotates Execution Properties



What A Pass Does
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While traversing the input IR DAG,

(1) Inserts Utility Vertices 

(2) Annotates Execution Properties

Applies a specific function



What A Pass Does
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While traversing the input IR DAG,

(1) Inserts Utility Vertices 

(2) Annotates Execution Properties

Scheduling/Communication



Passes We Implemented & Evaluated
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GeoDistResourcePass

LargeShufflePass

TransientResourcePass

SkewCTPass

SkewRTPass

SkewSamplingPass
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GeoDistResourcePass

(1) LargeShufflePass

(2) TransientResourcePass

SkewCTPass
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SkewSamplingPass

In This Talk (See Paper for Others)

Both are 
compile 

time passes 
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(1) LargeShufflePass: Goal

Avoid on-disk data shuffle!

● Shuffle data in memory

● Write shuffled data to disks

● Read from disks sequentially

Related Work: Riffle (EuroSys18)
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for each shuffle edge e in irdag:
 rv = RelayVertex(), irdag.insert(rv, e) 

(1) LargeShufflePass: Algorithm

M R
shuffle

RelayM R
shuffle one-to-one

Applies an identity function

Utility
Vertex
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for each shuffle edge e in irdag:
 rv = RelayVertex(), irdag.insert(rv, e) 
 rv.inEdge.set(DataFlow.Push, 
  DataStore.Memory, Persistence.Discard)

(1) LargeShufflePass: Algorithm

RelayM R
shuffle one-to-one

RelayM R

shuffle, 
Push, 

Memory, 
Discard one-to-one

Do not persist data in memory

In-memory 
shuffle

Execute M 
and Relay 
concurrently

Execution Properties
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for each shuffle edge e in irdag:
 rv = RelayVertex(), irdag.insert(rv, e) 
 rv.inEdge.set(DataFlow.Push, 
  DataStore.Memory, Persistence.Discard) 
 rv.outEdge.set(DataFlow.Pull, DataStore.Disk)
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(1) LargeShufflePass: Correctness
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(2) TransientResourcePass: Goal
Minimize recomputations!

● Place on Transient/Reserved judiciously

● Push data from Transient to Reserved

Related Work: Pado (EuroSys17)
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(2) TransientResourcePass: Algorithm
for each vertex v in topologicalSort(irdag):
 if (containsShuffle(v.inEdges) || ...):
  v.set(ResourcePriority.Reserved)
 else:
  v.set(ResourcePriority.Transient)

M R
shuffle

M R
shuffle

Transient Reserved
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(2) TransientResourcePass: Algorithm
for each vertex v in topologicalSort(irdag):
 if (containsShuffle(v.inEdges) || ...):
  v.set(ResourcePriority.Reserved)
 else:
  v.set(ResourcePriority.Transient)
 for e in v.inEdges:
  if fromTransientToReserved(e.src, e.dst):
   e.set(DataFlow.Push)

M R

shuffle, 
Push

Transient Reserved
M R

shuffle

Transient Reserved
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(2) TransientResourcePass: Corectness
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(2) TransientResourcePass: Runtime
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(2) TransientResourcePass: Runtime
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(2) TransientResourcePass: Runtime
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LargeShufflePass+TransientResourcePass
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LargeShufflePass+TransientResourcePass
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LargeShufflePass+TransientResourcePass
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Implementation 
& Evaluation



● Open source (https://nemo.apache.org)
● 32K lines of Java code, including its own runtime
● Good integration with other Apache Big Data projects

○ Supported applications
○
○
○ Supported cluster resource managers
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Implementation

(thanks to                     )



Large Data Shuffle

Transient Resources

Geo-distributed Resources

Skewed Data

Large Shuffle on Transient Resources

Skewed Data on Geo-distributed Resources

Large Shuffle with Skewed Data
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What We Evaluated: Scenarios
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In This Talk (See Paper for Others)
Large Data Shuffle

Transient Resources

Geo-distributed Resources

Skewed Data

Large Shuffle on Transient Resources

Skewed Data on Geo-distributed Resources

Large Shuffle with Skewed Data



Apache Nemo

Apache Spark: A state-of-the-art runtime

Pado (EuroSys17): Specialized for transient resources

Hurricane (EuroSys18): Specialized for data skew

Iridium (SIGCOMM15): Specialized for geo analytics
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What We Evaluated: Systems



Apache Nemo

Apache Spark: A state-of-the-art runtime
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Iridium (SIGCOMM15): Specialized for geo analytics
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In This Talk (See Paper for Others)
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Large Shuffle (Lower is Better)

512GB 1TB 2TB
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Input data size

⇒ MapReduce on 20 AWS EC2 h1.4xlarge instances
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Large Shuffle (Lower is Better)

512GB 1TB 2TB
Nemo    Spark Nemo    Spark Nemo    Spark

Input data size

⇒ MapReduce on 20 AWS EC2 h1.4xlarge instances

Outperforms 
Spark
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Transient Resources (Lower is Better)
⇒ ALS on 10 transient + 2 reserved EC2 instances
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Transient Resources (Lower is Better)
⇒ ALS on 10 transient + 2 reserved EC2 instances

On par with Pado
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Large Shuffle on Transient Resources 
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⇒ 1TB MapReduce on 10 transient + 10 reserved
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Large Shuffle on Transient Resources 

O
ut

 o
f m

em
or

y

⇒ 1TB MapReduce on 10 transient + 10 reserved

Further improves perf



● Problem: Make it easy to optimize distributed dataflows
● Solution: Optimization passes that transform an 

intermediate representation (IR) DAG
● Result

○ Nemo outperforms a state-of-the-art Apache Spark 
with clean and simple optimization passes

○ Nemo is on par with specialized runtimes
○ Nemo further improves performance for scenarios with 

combined resource and data characteristics
73

Summary: Apache Nemo
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https://nemo.apache.org

Build Your Own Passes,
For Your Dataflow Research!

https://github.com/apache/incubator-nemo


