DLOS: Effective Static Detection of
Deadlocks in OS Kernels

In USENIX ATC 2022

Jia-Ju Bai, Tuo Li, Shi-Min Hu
Tsinghua University

‘ https://baijiaju.github.io/
@

https://baijiaju.github.io/

Motivation

Deadlocks in OS kernels
Caused by locking cycles in concurrent threads
Hard to find due to the non-determinism of kernel concurrency
Can cause performance degradation and even system hangs

Motivation

Example
ABBA deadlock in Linux 4.9 btrfs filesystem
Lifetime: Jul. 2016 ~ Oct. 2020
Fixed by the commit 01d01cafl9ff in Linux 5.9

Code Path P1:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_read_chunk_tree
-> lock_chunks [Line 6803]
-> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]
->read_one_dev [Line 6833]
->open_seed_devices [Line 6601] A—B
-> clone_fs_devices [Line 6558]
-> mutex_lock(&orig->device_list_mutex) [Line 734]

Code Path P2:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_remove_chunk
-> mutex_lock(&fs_devices->device_list_mutex) [Line 2844]
-> lock_chunks [Line 2857] ¢ B—A
-> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]

State of the art

Basic steps of deadlock detection
S1: Extracting locking constraints in concurrent threads/code paths
T{A — B} means thread T acquires lock B when lock A is held
S2: Detecting locking cycles in concurrent threads/code paths
T,{A— B}, T,{B — C} and T;{C — A} form a locking cycle in three threads

Thread T; Thread T, Thread T; Thread T, Thread T;
spin_lock(A); spin_lock(B); spin_lock(A); spin_lock(B); spin_lock(C);
spin_lock(B); spin_lock(A); spin_lock(B); ||spin_lock(C); |[spin_lock(A);

Locking constraint: T:{A—B}, T,{B—C}, T:{C—A}
Locking cycle: A—B, B—C, C—A Deadlock!

Deadlock in three threads

Locking constraint: T:{A—B}, T,{B—A}
Locking cycle: A—B, B—A Deadlock!

Deadlock in two threads

State of the art

Dynamic analysis
Most approaches are designed for user-level applications
Advantages: low false positives + support reproduction
Weakness: limited testing coverage + runtime overhead

LockDep]

Widely-used kernel lock-usage runtime validator
Runtime monitoring and checking
Based on the granularity of lock class

[1] Lockdep. https://www.kernel.org/doc/html/latest/locking/lockdep-design.htmi

State of the art

Static analysis
Most approaches are designed for user-level applications
Advantages: good detection coverage + easy to use
Weakness: high false positives + hard to reproduce

RacerX [2]

Sole static approach of detecting kernel deadlocks
Flow-sensitive and inter-procedural analysis
46% false positive rate in its evaluation

We focus on improving static analysis in kernel deadlock detection!

[2] Engler et al. RacerX: effective, static detection of race conditions and deadlocks. In SOSP 03.

Challenges of static kernel deadlock detection

C1: Extracting locking constraints

How to ensure both the accuracy and efficiency when analyzing
large kernel code?

C2: Detecting locking cycles

How to reduce the time usage of comparing numerous locking
constraints in lots of code paths?

C3: Dropping false bugs

How to effectively drop false positives with short time usage?

Key technigues

C1: Extracting locking constraints

T1: Summary-based lock-usage analysis to extract target code
paths containing distinct locking constraints

C2: Detecting locking cycles

T2: Reachability-based comparison method to detect locking
cycles from locking constraints

C3: Dropping false bugs

T3: Two-dimensional filtering strategy to drop false positives by
validating code-path feasibility and concurrency

T1: Summary-based lock-usage analysis

S1: Collecting target code paths
Target code path means a code path having lock-related operations
Flow-sensitive, field-sensitive and inter-procedural analysis
Andersen-style Bl alias analysis to identify aliased lock variables
Create and reuse function summaries to reduce repeated analysis
Drop target code paths having repeated lock-related operations

[3] Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD thesis, 1994.

T1: Summary-based lock-usage analysis

S1: Collecting target code paths
Example: Linux affs filesystem code

Code path

Function summary

OO@% QOé @@g

® ®

// This function is first analyzed
void affs_free_block(struct super_block *sb, ...) {
struct affs_sb_info *sbi = sb->s_fs_info; // Alias

// Create and use function summary
affs_mark_sb_dirty(sb);
mutex_unlock(&sbi->s_bmlock);
}// Create function summary at function return
void affs_mark_sb_dirty(struct super_block *sb) {
struct affs_sb_info *sbi = sb->s_fs_info; // Alias

spin_unlock(&sbi->work_lock);
} // Create function summary at function return
// This function is then analyzed
void affs_alloc_block(struct super_block *sb, ...) {
struct affs_sb_info *sbi = sb->s_fs_info; // Alias

// Reuse function summary
affs_mark_sb_dirty(sb);
mutex_unlock(&sbi->s_bmlock);

}// Create function summary at function return

&E0

FuncSummary(affs_free_block):
Target code pathl:

(1) Basic blocks in the code path

(2) Lock-operation vector:
mutex_lock(sb->s_fs_info->s_bmlock)
spin_lock(sb->s_fs_info->work_lock)
spin_unlock(sb->s_fs_info->work_lock)
mutex_lock(sb->s_fs_info->s_bmlock)

FuncSummary(affs_mark_sb_dirty): splice

Target code pathl:
(1) Basic blocks in the code path
(2) Lock-operation vector:

spin_lock(sb->s_fs_info->work_lock)
spin_unlock(sb->s_fs_info->work_lock)

Splice

FuncSummary(affs_alloc_block):
Target code path1l:

(1) Basic blocks in the code path

(2) Lock-operation vector:
mutex_lock(sb->s_fs_info->s_bmlock)
spin_lock(sb->s_fs_info->work_lock)
spin_unlock(sb->s_fs_info->work_lock)
mutex_lock(sb->s_fs_info->s_bmlock)

T1: Summary-based lock-usage analysis

S2: Computing locking constraints
Static lockset analysis [for each target code path
Handle the cases of acquiring and releasing locks

Casel: Acquiring lock X Case 2: Releasing lock X

Original lockset LS = {A, B} Original lockset LS = {A, B, X}

(1) Create new locking constraints: (1) Find and drop X in the lockset:
A—X, B—X LS = {A, B}

(2) Add X in the lockset:
LS ={A, B, X}

[4] Savage et al. Eraser: a dynamic data race detector for multithreaded programs. In TOCS 97.

T2: Reachability-based comparison method

S1: Identifying the same locks in target code paths
Field-based analysis of data structure type and field

S2: Comparing locking constraints in target code paths to
detect possible deadlocks

Traditional comparison:
(1) Start the comparison from each locking constraint;
(2) Compare the current locking constraint with each locking constraint in
other code paths;
(3) If matched, replace the current locking constraint with the matched one;
(4) If not matched, select another locking constraint for comparison

T2: Reachability-based comparison method

Example of traditional comparison (4 target paths TP1~TP4)
Traditional method:

TP1 TP2 TP3 TP4
| A-B | | _D—>A | | _B—C | | B—E |

Start from TP1{A— B}:

TP1{A—B} and TP2{D—A}: STOP
TP1{A—B} and TP3{B—C}: CONTINUE!
TP3{B—C}and TP2{D—A}: STOP

TP3{B—C} and TP4{B—E}: STOP
TP1{A—B} and TP4{B—E}: CONTINUE!
TP4{B—E} and TP2{D—A}: STOP

TP4{B—E} and TP3{B—C}: STOP

T2: Reachability-based comparison method

Example of traditional comparison (4 target paths TP1~TP4)
Traditional method:

TP1 TP2 TP3 TP4
| A-B | | _D—>A | | _B—C | | B—E |

Start from TP1{A— B}: Start from TP2{D—A}:

TP1{A—B} and TP2{D—A}: STOP TP2{D—A} and TP1{A—B}: CONTINUE!
TP1{A—B} and TP3{B—C}: CONTINUE! TP1{A—B} and TP3{B—C}: CONTINUE!
TP3{B—C}and TP2{D—A}: STOP TP3{B—C} and TP4{B—E}: STOP

TP3{B—C} and TP4{B—E}: STOP TP1{A—B} and TP4{B—E}: CONTINUE!
TP1{A—B} and TP4{B—E}: CONTINUE! TP4{B—E} and TP3{B—C}: STOP

TP4{B—E} and TP2{D—A}: STOP TP2{D—A} and TP3{B—C}: STOP

TP4{B—E} and TP3{B—C}: STOP TP2{D—A} and TP4{B—E}: STOP

T2: Reachability-based comparison method

Example of traditional comparison (4 target paths TP1~TP4)
Traditional method:

TP1 TP2 TP3 TP4
| A—B | | D—A | | B—C | | B—E |

Start from TP1{A— B}: Start from TP2{D—A}:
TP1{A—B}and TP2{D—A}: STOP TP2{D—A} and TP1{A—B}: CONTINUE!
TP1{A—B} and TP3{B—C}: CONTINUE! TP1{A—B} and TP3{B—C}: CONTINUE!
TP3{B—C} and TP2{D—A}: STOP TP3{B—C} and TP4{B—E}: STOP Repeated
TP3{B—C} and TP4{B—E}: STOP TP1{A—B} and TP4{B—E}: CONTINUE! { comparison
TP1{A—B} and TP4{B—E}: CONTINUE! TP4{B—E} and TP3{B—C}: STOP
TP4{B—E}and TP2{D—A}: STOP TP2{D—A} and TP3{B—C}: STOP
TP4{B—E} and TP3{B—C}: STOP TP2{D—A} and TP4{B—E}: STOP

T2: Reachability-based comparison method

New structure: indirect locking constraint
Combine multiple locking constraints for a reachable node
Can reduce repeated comparison

/\?:1 (TR‘{A! — A.f—l—l }) = TP.f.f?(i.frcfcr {A] — An—l—l 3 T’PS&'I}
TPy = {TP,,TP>,...TP,}

T2: Reachabillity-based comparison method
Example of traditional comparison (4 target paths TP1~TP4)

Our method:
TP1 TP2 TP3 TP4
A—B | D—A | | B—C | | B—E |
A—C, [TP3]
A—E, [TP4]

Start from TP1{A— B}:

TP1{A—B} and TP2{D—A}: STOP
TP1{A—B} and TP3{B—C}: CONTINUE!
[Create a reachable node A—C]
TP3{B—C} and TP2{D—A}: STOP
TP3{B—C} and TP4{B—E}: STOP
TP1{A—B} and TP4{B—E}: CONTINUE!
[Create a reachable node A—E]
TP4{B—E} and TP2{D—A}: STOP
TP4{B—E} and TP3{B—C}: STOP
[TP1 has complete reachability graph]

T2: Reachabillity-based comparison method
Example of traditional comparison (4 target paths TP1~TP4)

Our method:
TP1 TP2 TP3 TP4
A—B | D—A | | B—C | | B—E |
A—C, [TP3]
A—E, [TP4]

Start from TP1{A— B}:

TP1{A—B} and TP2{D—A}: STOP
TP1{A—B} and TP3{B—C}: CONTINUE!
[Create a reachable node A—C]
TP3{B—C} and TP2{D—A}: STOP
TP3{B—C} and TP4{B—E}: STOP
TP1{A—B} and TP4{B—E}: CONTINUE!
[Create a reachable node A—E]
TP4{B—E} and TP2{D—A}: STOP
TP4{B—E} and TP3{B—C}: STOP
[TP1 has complete reachability graph]

Start from TP2{D—A}:

TP2{D— A} and TP1{A—B}: STOP (no cycle)
TP2{D—A} and TP1{A—C}: STOP (no cycle)
TP2{D—A} and TP1{A—E}: STOP (no cycle)
TP2{D—A} and TP3{B—C}: STOP
TP2{D—A} and TP4{B—E}: STOP

T3: Two-dimensional filtering strategy

D1: Validating code-path feasibility (using Z3 [®! SMT solver)
Lock-usage analysis for numerous code paths:
Light-weight and imprecise code-path checking — for efficiency
False-positive filtering for some possible deadlocks:
Heavy-weight and precise code-path checking — for accuracy

[5] Z3: a theorem prover. https://github.com/Z3Prover/z3.

T3: Two-dimensional filtering strategy

D2: Validating code-path concurrency
Checking common lock:
Whether the two code paths have a common lock?

Checking call graph:
Whether the two code paths have common parts in call graphs?

TP1 TP2 TP1 TP2

spin_lock(X); spin_lock(X); Func X Func X
............ -> FuncP -> FuncQ
spin_lock(A); spin_lock(B); ->spin_lock(A); -> spin_lock(B);
............ -> spin_lock(B); -> spin_lock(A);
spin_lock(B); spin_lock(A);

Common lock Common part in call graph

Approach

DLOS (DeadLocks in OS kernels)
Integrate the three key techniques
Statically detect deadlocks in OS kernels
LLVM-based static analysis

OS kernel
source code

DLOS
v v v v v
Clang Information Lock-usage Locking-cycle Deadlock
compiler collector r analyzer r detector r validator
\ 4 A\ 4 A\ 4 A\ 4 \ 4
(VM (' Function) (" Target (Possible (Final h
_ bytecode __information) __ code paths | deadlocks (_ deadlocks

Evaluation

Linux 4.9 and 5.10

Use a regular PC with eight CPUs and 16GB memory
Use Clang-9.0
Make allyesconfig of x86-64

Linux 4.9 A

Next LTS Kernel LINUXKERNE %510,

Evaluation

Deadlock detection

Description Linux 4.9 Linux 5.10

Analyzed source files (.c 23.7K 29.4K
Code handling y (.)

Analyzed source code lines 11.4M 14.7M
Lock-usage Distinct target code paths 102K 117K
analysis Locking constraints 323K 439K

Created indirect locking constraints 196K 222K
Lock-cycle : : ,

: Times of reducing comparison 851K 946K

detection :

Possible deadlocks 465 539
Deadlock Dropped false bugs 419 474
detection Found bugs (real / all) 39/ 46 54/ 65
Time usage 372m 418m

		Description

		Linux 4.9

		Linux 5.10

		Code handling

		Analyzed source files (.c)

		23.7K

		29.4K

		

		Analyzed source code lines

		11.4M

		14.7M

		Lock-usage analysis

		Distinct target code paths

		102K

		117K

		

		Locking constraints

		323K

		439K

		Lock-cycle detection

		Created indirect locking constraints

		196K

		222K

		

		Times of reducing comparison

		851K

		946K

		

		Possible deadlocks

		465

		539

		Deadlock detection

		Dropped false bugs

		419

		474

		

		Found bugs (real / all)

		39 / 46

		54 / 65

		Time usage

		372m

		418m

Evaluation

Linux 4.9

Find 46 deadlocks, and 39 of them are real
21 deadlocks have been fixed in Linux 5.10

Linux 5.10

Find 65 deadlocks, and 54 of them are real
31 deadlocks have been confirmed

Some confirmed deadlocks:

* https://github.com/torvalds/linux/commit/7418e6520f22
» https://github.com/torvalds/linux/commit/7740b615b666
» https://github.com/torvalds/linux/commit/f10f582d2822

Limitations

False positives
Field-based analysis is not accurate enough
Alias analysis is intra-procedural and flow-insensitive
Path validation can make mistakes in complex cases

False negatives
Incomplete bottom-up analysis of called functions
No analysis of function-pointer calls
Assume that a code path is never concurrently executed with itself

Conclusion

Deadlocks are dangerous and hard-to-find in OS kernels

DLOS: static detection of deadlocks in OS kernels

T1: Summary-based lock-usage analysis to extract target code
paths containing distinct locking constraints

T2: Reachability-based comparison method to detect locking
cycles from locking constraints

T3: Two-dimensional filtering strategy to drop false positives by
validating code-path feasibility and concurrency

Find 39 and 54 real deadlocks in Linux 4.9 and 5.10
DLOS can be extended to detecting other locking issues

Thanks for listening!

Jia-Ju Bai
E-mail: baijiaju@tsinghua.edu.cn

‘ https://baijiaju.github.io/
@

https://baijiaju.github.io/

	DLOS: Effective Static Detection of �Deadlocks in OS Kernels��In USENIX ATC 2022
	Motivation
	Motivation
	State of the art
	State of the art
	State of the art
	Challenges of static kernel deadlock detection
	Key techniques
	T1: Summary-based lock-usage analysis
	T1: Summary-based lock-usage analysis
	T1: Summary-based lock-usage analysis
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T3: Two-dimensional filtering strategy
	T3: Two-dimensional filtering strategy
	Approach
	Evaluation
	Evaluation
	Evaluation
	Limitations
	Conclusion
	Thanks for listening!��

