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Motivation 
 Deadlocks in OS kernels 

 Caused by locking cycles in concurrent threads 
 Hard to find due to the non-determinism of kernel concurrency 
 Can cause performance degradation and even system hangs 
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Motivation 
 Example 

 ABBA deadlock in Linux 4.9 btrfs filesystem 
 Lifetime: Jul. 2016 ~ Oct. 2020 
 Fixed by the commit 01d01caf19ff in Linux 5.9 
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Code Path P1:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_read_chunk_tree
    -> lock_chunks [Line 6803]
        -> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]
    -> read_one_dev [Line 6833]
        -> open_seed_devices [Line 6601]
            -> clone_fs_devices [Line 6558]
                -> mutex_lock(&orig->device_list_mutex) [Line 734]
Code Path P2:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_remove_chunk
    -> mutex_lock(&fs_devices->device_list_mutex) [Line 2844]
    -> lock_chunks [Line 2857]
        -> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]

A→B

B→A



State of the art 
 Basic steps of deadlock detection 

 S1: Extracting locking constraints in concurrent threads/code paths 
 T{A → B} means thread T acquires lock B when lock A is held 
 S2: Detecting locking cycles in concurrent threads/code paths 
 T1{A → B}, T2{B → C} and T3{C → A} form a locking cycle in three threads 

 

4 

spin_lock(A);
......
spin_lock(B);

spin_lock(B);
......
spin_lock(A);

Thread T1 Thread T2

spin_lock(A);
......
spin_lock(B);

spin_lock(B);
......
spin_lock(C);

Thread T1 Thread T2

spin_lock(C);
......
spin_lock(A);

Thread T3

Locking constraint: T1{A→B}, T2{B→A}
Locking cycle: A→B, B→A   Deadlock!

Deadlock in two threads

Locking constraint: T1{A→B}, T2{B→C}, T3{C→A}
Locking cycle: A→B, B→C, C→A   Deadlock!

Deadlock in three threads



State of the art 
 Dynamic analysis 

 Most approaches are designed for user-level applications 
 Advantages: low false positives + support reproduction 
 Weakness: limited testing coverage + runtime overhead 

 LockDep [1] 

 Widely-used kernel lock-usage runtime validator 
 Runtime monitoring and checking 
 Based on the granularity of lock class 
 

5 [1] Lockdep. https://www.kernel.org/doc/html/latest/locking/lockdep-design.html 



State of the art 
 Static analysis 

 Most approaches are designed for user-level applications 
 Advantages: good detection coverage + easy to use 
 Weakness: high false positives + hard to reproduce 

 RacerX [2] 

 Sole static approach of detecting kernel deadlocks 
 Flow-sensitive and inter-procedural analysis 
 46% false positive rate in its evaluation 
 

6 [2] Engler et al. RacerX: effective, static detection of race conditions and deadlocks. In SOSP 03. 

We focus on improving static analysis in kernel deadlock detection! 



Challenges of static kernel deadlock detection 
 C1: Extracting locking constraints 

 How to ensure both the accuracy and efficiency when analyzing 
large kernel code? 

 C2: Detecting locking cycles 
 How to reduce the time usage of comparing numerous locking 

constraints in lots of code paths? 
 C3: Dropping false bugs 

 How to effectively drop false positives with short time usage? 
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Key techniques 
 C1: Extracting locking constraints 

 T1: Summary-based lock-usage analysis to extract target code 
paths containing distinct locking constraints 

 C2: Detecting locking cycles 
 T2: Reachability-based comparison method to detect locking 

cycles from locking constraints 
 C3: Dropping false bugs 

 T3: Two-dimensional filtering strategy to drop false positives by 
validating code-path feasibility and concurrency 
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T1: Summary-based lock-usage analysis  
 S1: Collecting target code paths 

 Target code path means a code path having lock-related operations 
 Flow-sensitive, field-sensitive and inter-procedural analysis 
 Andersen-style [3] alias analysis to identify aliased lock variables 
 Create and reuse function summaries to reduce repeated analysis 
 Drop target code paths having repeated lock-related operations 

9 [3] Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD thesis, 1994. 



T1: Summary-based lock-usage analysis  
 S1: Collecting target code paths 

 Example: Linux affs filesystem code 
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// This function is first analyzed 
void affs_free_block(struct super_block *sb, ...) {
      struct affs_sb_info *sbi = sb->s_fs_info;  // Alias
      ......
      mutex_lock(&sbi->s_bmlock);
      ......
      // Create and use function summary
      affs_mark_sb_dirty(sb);
      mutex_unlock(&sbi->s_bmlock);
} // Create function summary at function return

void affs_mark_sb_dirty(struct super_block *sb) {
      struct affs_sb_info *sbi = sb->s_fs_info;  // Alias
      ......
      spin_lock(&sbi->work_lock);
      ......
      spin_unlock(&sbi->work_lock);
}  // Create function summary at function return

// This function is then analyzed
void affs_alloc_block(struct super_block *sb, ...) {
      struct affs_sb_info *sbi = sb->s_fs_info;  // Alias
      ......
      mutex_lock(&sbi->s_bmlock);
      ......
      // Reuse function summary
      affs_mark_sb_dirty(sb);
      mutex_unlock(&sbi->s_bmlock);
} // Create function summary at function return

4
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FuncSummary(affs_free_block):
    Target code path1:
        (1) Basic blocks in the code path
        (2) Lock-operation vector:    
            mutex_lock(sb->s_fs_info->s_bmlock)
            spin_lock(sb->s_fs_info->work_lock)
            spin_unlock(sb->s_fs_info->work_lock)
            mutex_lock(sb->s_fs_info->s_bmlock)
    ......

FuncSummary(affs_mark_sb_dirty):
    Target code path1:
        (1) Basic blocks in the code path
        (2) Lock-operation vector:    
            spin_lock(sb->s_fs_info->work_lock)
            spin_unlock(sb->s_fs_info->work_lock)
    ......

FuncSummary(affs_alloc_block):
    Target code path1:
        (1) Basic blocks in the code path
        (2) Lock-operation vector:    
            mutex_lock(sb->s_fs_info->s_bmlock)
            spin_lock(sb->s_fs_info->work_lock)
            spin_unlock(sb->s_fs_info->work_lock)
            mutex_lock(sb->s_fs_info->s_bmlock)
    ......

Code path Function summary

Steps

Splice
Splice



T1: Summary-based lock-usage analysis  
 S2: Computing locking constraints 

 Static lockset analysis [4] for each target code path 
 Handle the cases of acquiring and releasing locks 

11 [4] Savage et al. Eraser: a dynamic data race detector for multithreaded programs. In TOCS 97. 

Case1: Acquiring lock X Case 2: Releasing lock X
Original lockset LS = {A, B}
(1) Create new locking constraints: 
      A→X, B→X
(2) Add X in the lockset:
      LS = {A, B, X}

Original lockset LS = {A, B, X}
(1) Find and drop X in the lockset:
      LS = {A, B}



T2: Reachability-based comparison method  
 S1: Identifying the same locks in target code paths 

 Field-based analysis of data structure type and field 
 

 S2: Comparing locking constraints in target code paths to 
detect possible deadlocks 
 Traditional comparison:  
(1) Start the comparison from each locking constraint; 
(2) Compare the current locking constraint with each locking constraint in   
      other code paths; 
(3) If matched, replace the current locking constraint with the matched one; 
(4) If not matched, select another locking constraint for comparison 12 



T2: Reachability-based comparison method  
 Example of traditional comparison (4 target paths TP1~TP4) 

 Traditional method:  
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TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
     TP3{B→C} and TP2{D→A}: STOP
     TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}:  CONTINUE!
     TP4{B→E} and TP2{D→A}: STOP     
     TP4{B→E} and TP3{B→C}: STOP



T2: Reachability-based comparison method  
 Example of traditional comparison (4 target paths TP1~TP4) 

 Traditional method:  
 

14 

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
     TP3{B→C} and TP2{D→A}: STOP
     TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}:  CONTINUE!
     TP4{B→E} and TP2{D→A}: STOP     
     TP4{B→E} and TP3{B→C}: STOP

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: CONTINUE!
     TP1{A→B} and TP3{B→C}: CONTINUE!
          TP3{B→C} and TP4{B→E}: STOP
     TP1{A→B} and TP4{B→E}: CONTINUE!
          TP4{B→E} and TP3{B→C}: STOP
TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP



T2: Reachability-based comparison method  
 Example of traditional comparison (4 target paths TP1~TP4) 

 Traditional method:  
 

15 

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
     TP3{B→C} and TP2{D→A}: STOP
     TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}:  CONTINUE!
     TP4{B→E} and TP2{D→A}: STOP     
     TP4{B→E} and TP3{B→C}: STOP

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: CONTINUE!
     TP1{A→B} and TP3{B→C}: CONTINUE!
          TP3{B→C} and TP4{B→E}: STOP
     TP1{A→B} and TP4{B→E}: CONTINUE!
          TP4{B→E} and TP3{B→C}: STOP
TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP

Repeated 
comparison



T2: Reachability-based comparison method  
 New structure: indirect locking constraint 

 Combine multiple locking constraints for a reachable node 
 Can reduce repeated comparison 
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T2: Reachability-based comparison method  
 Example of traditional comparison (4 target paths TP1~TP4) 

 Our method:  
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Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
     [Create a reachable node A→C]
     TP3{B→C} and TP2{D→A}: STOP
     TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!
     [Create a reachable node A→E]
     TP4{B→E} and TP2{D→A}: STOP
     TP4{B→E} and TP3{B→C}: STOP
[TP1 has complete reachability graph]

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

A→C, [TP3]
A→E, [TP4]



T2: Reachability-based comparison method  
 Example of traditional comparison (4 target paths TP1~TP4) 

 Our method:  
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Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
     [Create a reachable node A→C]
     TP3{B→C} and TP2{D→A}: STOP
     TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!
     [Create a reachable node A→E]
     TP4{B→E} and TP2{D→A}: STOP
     TP4{B→E} and TP3{B→C}: STOP
[TP1 has complete reachability graph]

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: STOP (no cycle)
TP2{D→A} and TP1{A→C}: STOP (no cycle)
TP2{D→A} and TP1{A→E}: STOP (no cycle)
TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

A→C, [TP3]
A→E, [TP4]



T3: Two-dimensional filtering strategy 
 D1: Validating code-path feasibility (using Z3 [5] SMT solver) 

 Lock-usage analysis for numerous code paths:  
 Light-weight and imprecise code-path checking — for efficiency 
 False-positive filtering for some possible deadlocks:  
 Heavy-weight and precise code-path checking — for accuracy 
 

 
 

19 [5] Z3: a theorem prover. https://github.com/Z3Prover/z3. 



T3: Two-dimensional filtering strategy 
 D2: Validating code-path concurrency 

 Checking common lock:  
 Whether the two code paths have a common lock? 
 Checking call graph:  
 Whether the two code paths have common parts in call graphs? 
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spin_lock(X);
......
spin_lock(A);
......
spin_lock(B);

TP1

Common lock

spin_lock(X);
......
spin_lock(B);
......
spin_lock(A);

TP2
Func X
  -> FuncP
    -> spin_lock(A);
    -> spin_lock(B);      

TP1

Common part in call graph

Func X
  -> FuncQ
    -> spin_lock(B);
    -> spin_lock(A);      

TP2



Approach 
 DLOS (DeadLocks in OS kernels) 

 Integrate the three key techniques 
 Statically detect deadlocks in OS kernels 
 LLVM-based static analysis 
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DLOS

Lock-usage 
analyzer

Clang 
compiler

Locking-cycle 
detector

LLVM
bytecode

Target 
code paths

Information 
collector

Function 
information

Possible 
deadlocks

OS kernel 
source code

Deadlock 
validator

Final 
deadlocks



Evaluation 
 Linux 4.9 and 5.10 

 Use a regular PC with eight CPUs and 16GB memory 
 Use Clang-9.0 
 Make allyesconfig of x86-64 

22 



Evaluation 
 Deadlock detection 
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Description Linux 4.9 Linux 5.10 

Code handling 
Analyzed source files (.c) 23.7K 29.4K 
Analyzed source code lines 11.4M 14.7M 

Lock-usage 
analysis 

Distinct target code paths 102K 117K 
Locking constraints 323K 439K 

Lock-cycle 
detection 

Created indirect locking constraints 196K 222K 
Times of reducing comparison 851K 946K 
Possible deadlocks 465 539 

Deadlock 
detection 

Dropped false bugs 419 474 
Found bugs (real / all) 39 / 46 54 / 65 

Time usage 372m 418m 
 


		Description

		Linux 4.9

		Linux 5.10



		Code handling

		Analyzed source files (.c)

		23.7K

		29.4K



		

		Analyzed source code lines

		11.4M

		14.7M



		Lock-usage analysis

		Distinct target code paths

		102K

		117K



		

		Locking constraints

		323K

		439K



		Lock-cycle detection

		Created indirect locking constraints

		196K

		222K



		

		Times of reducing comparison

		851K

		946K



		

		Possible deadlocks

		465

		539



		Deadlock detection

		Dropped false bugs

		419

		474



		

		Found bugs (real / all)

		39 / 46

		54 / 65



		Time usage

		372m

		418m









Evaluation 
 Linux 4.9 

 Find 46 deadlocks, and 39 of them are real 
 21 deadlocks have been fixed in Linux 5.10 

 Linux 5.10 
 Find 65 deadlocks, and 54 of them are real 
 31 deadlocks have been confirmed 

24 

Some confirmed deadlocks: 
• https://github.com/torvalds/linux/commit/7418e6520f22 
• https://github.com/torvalds/linux/commit/7740b615b666 
• https://github.com/torvalds/linux/commit/f10f582d2822 



Limitations 
 False positives 

 Field-based analysis is not accurate enough 
 Alias analysis is intra-procedural and flow-insensitive 
 Path validation can make mistakes in complex cases 
 …… 

 False negatives 
 Incomplete bottom-up analysis of called functions 
 No analysis of function-pointer calls 
 Assume that a code path is never concurrently executed with itself 
 …… 
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Conclusion 
 Deadlocks are dangerous and hard-to-find in OS kernels 
 DLOS: static detection of deadlocks in OS kernels 

 T1: Summary-based lock-usage analysis to extract target code 
paths containing distinct locking constraints 

 T2: Reachability-based comparison method to detect locking 
cycles from locking constraints 

 T3: Two-dimensional filtering strategy to drop false positives by 
validating code-path feasibility and concurrency 

 Find 39 and 54 real deadlocks in Linux 4.9 and 5.10 
 DLOS can be extended to detecting other locking issues  

26 



Thanks for listening! 
 
 

Jia-Ju Bai 
E-mail: baijiaju@tsinghua.edu.cn 

https://baijiaju.github.io/ 
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