
DLOS: Effective Static Detection of
Deadlocks in OS Kernels

In USENIX ATC 2022

Jia-Ju Bai, Tuo Li, Shi-Min Hu
Tsinghua University

https://baijiaju.github.io/

https://baijiaju.github.io/

Motivation
 Deadlocks in OS kernels

 Caused by locking cycles in concurrent threads
 Hard to find due to the non-determinism of kernel concurrency
 Can cause performance degradation and even system hangs

2

Motivation
 Example

 ABBA deadlock in Linux 4.9 btrfs filesystem
 Lifetime: Jul. 2016 ~ Oct. 2020
 Fixed by the commit 01d01caf19ff in Linux 5.9

3

Code Path P1:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_read_chunk_tree
 -> lock_chunks [Line 6803]
 -> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]
 -> read_one_dev [Line 6833]
 -> open_seed_devices [Line 6601]
 -> clone_fs_devices [Line 6558]
 -> mutex_lock(&orig->device_list_mutex) [Line 734]
Code Path P2:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_remove_chunk
 -> mutex_lock(&fs_devices->device_list_mutex) [Line 2844]
 -> lock_chunks [Line 2857]
 -> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]

A→B

B→A

State of the art
 Basic steps of deadlock detection

 S1: Extracting locking constraints in concurrent threads/code paths
 T{A → B} means thread T acquires lock B when lock A is held
 S2: Detecting locking cycles in concurrent threads/code paths
 T1{A → B}, T2{B → C} and T3{C → A} form a locking cycle in three threads

4

spin_lock(A);
......
spin_lock(B);

spin_lock(B);
......
spin_lock(A);

Thread T1 Thread T2

spin_lock(A);
......
spin_lock(B);

spin_lock(B);
......
spin_lock(C);

Thread T1 Thread T2

spin_lock(C);
......
spin_lock(A);

Thread T3

Locking constraint: T1{A→B}, T2{B→A}
Locking cycle: A→B, B→A Deadlock!

Deadlock in two threads

Locking constraint: T1{A→B}, T2{B→C}, T3{C→A}
Locking cycle: A→B, B→C, C→A Deadlock!

Deadlock in three threads

State of the art
 Dynamic analysis

 Most approaches are designed for user-level applications
 Advantages: low false positives + support reproduction
 Weakness: limited testing coverage + runtime overhead

 LockDep [1]

 Widely-used kernel lock-usage runtime validator
 Runtime monitoring and checking
 Based on the granularity of lock class

5 [1] Lockdep. https://www.kernel.org/doc/html/latest/locking/lockdep-design.html

State of the art
 Static analysis

 Most approaches are designed for user-level applications
 Advantages: good detection coverage + easy to use
 Weakness: high false positives + hard to reproduce

 RacerX [2]

 Sole static approach of detecting kernel deadlocks
 Flow-sensitive and inter-procedural analysis
 46% false positive rate in its evaluation

6 [2] Engler et al. RacerX: effective, static detection of race conditions and deadlocks. In SOSP 03.

We focus on improving static analysis in kernel deadlock detection!

Challenges of static kernel deadlock detection
 C1: Extracting locking constraints

 How to ensure both the accuracy and efficiency when analyzing
large kernel code?

 C2: Detecting locking cycles
 How to reduce the time usage of comparing numerous locking

constraints in lots of code paths?
 C3: Dropping false bugs

 How to effectively drop false positives with short time usage?

 7

Key techniques
 C1: Extracting locking constraints

 T1: Summary-based lock-usage analysis to extract target code
paths containing distinct locking constraints

 C2: Detecting locking cycles
 T2: Reachability-based comparison method to detect locking

cycles from locking constraints
 C3: Dropping false bugs

 T3: Two-dimensional filtering strategy to drop false positives by
validating code-path feasibility and concurrency

8

T1: Summary-based lock-usage analysis
 S1: Collecting target code paths

 Target code path means a code path having lock-related operations
 Flow-sensitive, field-sensitive and inter-procedural analysis
 Andersen-style [3] alias analysis to identify aliased lock variables
 Create and reuse function summaries to reduce repeated analysis
 Drop target code paths having repeated lock-related operations

9 [3] Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD thesis, 1994.

T1: Summary-based lock-usage analysis
 S1: Collecting target code paths

 Example: Linux affs filesystem code

10

// This function is first analyzed
void affs_free_block(struct super_block *sb, ...) {
 struct affs_sb_info *sbi = sb->s_fs_info; // Alias

 mutex_lock(&sbi->s_bmlock);

 // Create and use function summary
 affs_mark_sb_dirty(sb);
 mutex_unlock(&sbi->s_bmlock);
} // Create function summary at function return

void affs_mark_sb_dirty(struct super_block *sb) {
 struct affs_sb_info *sbi = sb->s_fs_info; // Alias

 spin_lock(&sbi->work_lock);

 spin_unlock(&sbi->work_lock);
} // Create function summary at function return

// This function is then analyzed
void affs_alloc_block(struct super_block *sb, ...) {
 struct affs_sb_info *sbi = sb->s_fs_info; // Alias

 mutex_lock(&sbi->s_bmlock);

 // Reuse function summary
 affs_mark_sb_dirty(sb);
 mutex_unlock(&sbi->s_bmlock);
} // Create function summary at function return

4

5

6

1

2

3

10

11

12
13

8

7

14

9

FuncSummary(affs_free_block):
 Target code path1:
 (1) Basic blocks in the code path
 (2) Lock-operation vector:
 mutex_lock(sb->s_fs_info->s_bmlock)
 spin_lock(sb->s_fs_info->work_lock)
 spin_unlock(sb->s_fs_info->work_lock)
 mutex_lock(sb->s_fs_info->s_bmlock)

FuncSummary(affs_mark_sb_dirty):
 Target code path1:
 (1) Basic blocks in the code path
 (2) Lock-operation vector:
 spin_lock(sb->s_fs_info->work_lock)
 spin_unlock(sb->s_fs_info->work_lock)

FuncSummary(affs_alloc_block):
 Target code path1:
 (1) Basic blocks in the code path
 (2) Lock-operation vector:
 mutex_lock(sb->s_fs_info->s_bmlock)
 spin_lock(sb->s_fs_info->work_lock)
 spin_unlock(sb->s_fs_info->work_lock)
 mutex_lock(sb->s_fs_info->s_bmlock)

Code path Function summary

Steps

Splice
Splice

T1: Summary-based lock-usage analysis
 S2: Computing locking constraints

 Static lockset analysis [4] for each target code path
 Handle the cases of acquiring and releasing locks

11 [4] Savage et al. Eraser: a dynamic data race detector for multithreaded programs. In TOCS 97.

Case1: Acquiring lock X Case 2: Releasing lock X
Original lockset LS = {A, B}
(1) Create new locking constraints:
 A→X, B→X
(2) Add X in the lockset:
 LS = {A, B, X}

Original lockset LS = {A, B, X}
(1) Find and drop X in the lockset:
 LS = {A, B}

T2: Reachability-based comparison method
 S1: Identifying the same locks in target code paths

 Field-based analysis of data structure type and field

 S2: Comparing locking constraints in target code paths to
detect possible deadlocks
 Traditional comparison:
(1) Start the comparison from each locking constraint;
(2) Compare the current locking constraint with each locking constraint in
 other code paths;
(3) If matched, replace the current locking constraint with the matched one;
(4) If not matched, select another locking constraint for comparison 12

T2: Reachability-based comparison method
 Example of traditional comparison (4 target paths TP1~TP4)

 Traditional method:

13

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
 TP3{B→C} and TP2{D→A}: STOP
 TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!
 TP4{B→E} and TP2{D→A}: STOP
 TP4{B→E} and TP3{B→C}: STOP

T2: Reachability-based comparison method
 Example of traditional comparison (4 target paths TP1~TP4)

 Traditional method:

14

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
 TP3{B→C} and TP2{D→A}: STOP
 TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!
 TP4{B→E} and TP2{D→A}: STOP
 TP4{B→E} and TP3{B→C}: STOP

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: CONTINUE!
 TP1{A→B} and TP3{B→C}: CONTINUE!
 TP3{B→C} and TP4{B→E}: STOP
 TP1{A→B} and TP4{B→E}: CONTINUE!
 TP4{B→E} and TP3{B→C}: STOP
TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP

T2: Reachability-based comparison method
 Example of traditional comparison (4 target paths TP1~TP4)

 Traditional method:

15

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
 TP3{B→C} and TP2{D→A}: STOP
 TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!
 TP4{B→E} and TP2{D→A}: STOP
 TP4{B→E} and TP3{B→C}: STOP

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: CONTINUE!
 TP1{A→B} and TP3{B→C}: CONTINUE!
 TP3{B→C} and TP4{B→E}: STOP
 TP1{A→B} and TP4{B→E}: CONTINUE!
 TP4{B→E} and TP3{B→C}: STOP
TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP

Repeated
comparison

T2: Reachability-based comparison method
 New structure: indirect locking constraint

 Combine multiple locking constraints for a reachable node
 Can reduce repeated comparison

16

T2: Reachability-based comparison method
 Example of traditional comparison (4 target paths TP1~TP4)

 Our method:

17

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
 [Create a reachable node A→C]
 TP3{B→C} and TP2{D→A}: STOP
 TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!
 [Create a reachable node A→E]
 TP4{B→E} and TP2{D→A}: STOP
 TP4{B→E} and TP3{B→C}: STOP
[TP1 has complete reachability graph]

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

A→C, [TP3]
A→E, [TP4]

T2: Reachability-based comparison method
 Example of traditional comparison (4 target paths TP1~TP4)

 Our method:

18

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
 [Create a reachable node A→C]
 TP3{B→C} and TP2{D→A}: STOP
 TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!
 [Create a reachable node A→E]
 TP4{B→E} and TP2{D→A}: STOP
 TP4{B→E} and TP3{B→C}: STOP
[TP1 has complete reachability graph]

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: STOP (no cycle)
TP2{D→A} and TP1{A→C}: STOP (no cycle)
TP2{D→A} and TP1{A→E}: STOP (no cycle)
TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

A→C, [TP3]
A→E, [TP4]

T3: Two-dimensional filtering strategy
 D1: Validating code-path feasibility (using Z3 [5] SMT solver)

 Lock-usage analysis for numerous code paths:
 Light-weight and imprecise code-path checking — for efficiency
 False-positive filtering for some possible deadlocks:
 Heavy-weight and precise code-path checking — for accuracy

19 [5] Z3: a theorem prover. https://github.com/Z3Prover/z3.

T3: Two-dimensional filtering strategy
 D2: Validating code-path concurrency

 Checking common lock:
 Whether the two code paths have a common lock?
 Checking call graph:
 Whether the two code paths have common parts in call graphs?

20

spin_lock(X);
......
spin_lock(A);
......
spin_lock(B);

TP1

Common lock

spin_lock(X);
......
spin_lock(B);
......
spin_lock(A);

TP2
Func X
 -> FuncP
 -> spin_lock(A);
 -> spin_lock(B);

TP1

Common part in call graph

Func X
 -> FuncQ
 -> spin_lock(B);
 -> spin_lock(A);

TP2

Approach
 DLOS (DeadLocks in OS kernels)

 Integrate the three key techniques
 Statically detect deadlocks in OS kernels
 LLVM-based static analysis

21

DLOS

Lock-usage
analyzer

Clang
compiler

Locking-cycle
detector

LLVM
bytecode

Target
code paths

Information
collector

Function
information

Possible
deadlocks

OS kernel
source code

Deadlock
validator

Final
deadlocks

Evaluation
 Linux 4.9 and 5.10

 Use a regular PC with eight CPUs and 16GB memory
 Use Clang-9.0
 Make allyesconfig of x86-64

22

Evaluation
 Deadlock detection

23

Description Linux 4.9 Linux 5.10

Code handling
Analyzed source files (.c) 23.7K 29.4K
Analyzed source code lines 11.4M 14.7M

Lock-usage
analysis

Distinct target code paths 102K 117K
Locking constraints 323K 439K

Lock-cycle
detection

Created indirect locking constraints 196K 222K
Times of reducing comparison 851K 946K
Possible deadlocks 465 539

Deadlock
detection

Dropped false bugs 419 474
Found bugs (real / all) 39 / 46 54 / 65

Time usage 372m 418m

		Description

		Linux 4.9

		Linux 5.10

		Code handling

		Analyzed source files (.c)

		23.7K

		29.4K

		

		Analyzed source code lines

		11.4M

		14.7M

		Lock-usage analysis

		Distinct target code paths

		102K

		117K

		

		Locking constraints

		323K

		439K

		Lock-cycle detection

		Created indirect locking constraints

		196K

		222K

		

		Times of reducing comparison

		851K

		946K

		

		Possible deadlocks

		465

		539

		Deadlock detection

		Dropped false bugs

		419

		474

		

		Found bugs (real / all)

		39 / 46

		54 / 65

		Time usage

		372m

		418m

Evaluation
 Linux 4.9

 Find 46 deadlocks, and 39 of them are real
 21 deadlocks have been fixed in Linux 5.10

 Linux 5.10
 Find 65 deadlocks, and 54 of them are real
 31 deadlocks have been confirmed

24

Some confirmed deadlocks:
• https://github.com/torvalds/linux/commit/7418e6520f22
• https://github.com/torvalds/linux/commit/7740b615b666
• https://github.com/torvalds/linux/commit/f10f582d2822

Limitations
 False positives

 Field-based analysis is not accurate enough
 Alias analysis is intra-procedural and flow-insensitive
 Path validation can make mistakes in complex cases
 ……

 False negatives
 Incomplete bottom-up analysis of called functions
 No analysis of function-pointer calls
 Assume that a code path is never concurrently executed with itself
 ……

25

Conclusion
 Deadlocks are dangerous and hard-to-find in OS kernels
 DLOS: static detection of deadlocks in OS kernels

 T1: Summary-based lock-usage analysis to extract target code
paths containing distinct locking constraints

 T2: Reachability-based comparison method to detect locking
cycles from locking constraints

 T3: Two-dimensional filtering strategy to drop false positives by
validating code-path feasibility and concurrency

 Find 39 and 54 real deadlocks in Linux 4.9 and 5.10
 DLOS can be extended to detecting other locking issues

26

Thanks for listening!

Jia-Ju Bai
E-mail: baijiaju@tsinghua.edu.cn

https://baijiaju.github.io/

https://baijiaju.github.io/

	DLOS: Effective Static Detection of �Deadlocks in OS Kernels��In USENIX ATC 2022
	Motivation
	Motivation
	State of the art
	State of the art
	State of the art
	Challenges of static kernel deadlock detection
	Key techniques
	T1: Summary-based lock-usage analysis
	T1: Summary-based lock-usage analysis
	T1: Summary-based lock-usage analysis
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T2: Reachability-based comparison method
	T3: Two-dimensional filtering strategy
	T3: Two-dimensional filtering strategy
	Approach
	Evaluation
	Evaluation
	Evaluation
	Limitations
	Conclusion
	Thanks for listening!��

