

Memory Harvesting in Multi-GPU Systems with Hierarchical Unified Virtual Memory

Sangjin Choi*, Taeksoo Kim*, Jinwoo Jeong, Rachata Ausavarungnirun, Myeongjae Jeon, Youngjin Kwon, Jeongseob Ahn

*Co-first author

Shared multi-GPU environment

• Shared multi-GPU servers to reduce the cost of infrastructure

Workloads are consolidated to improve resource utilization

Memory space across GPUs is not fully utilized

AWS p3.8xlarge instance

Memory space across GPUs is not fully utilized

- Each workload has highly varying memory demands
- GPU memory is not fully utilized in shared GPU clusters (e.g., Microsoft GPU cluster^[1])

[1] Jeon el al., Multi-tenant GPU Clusters for Deep Learning Workloads: Analysis and Implications. Technical Report MSR-TR-2018-13.

Memory space across GPUs is not fully utilized

- Each workload has highly varying memory demands
- GPU memory is not fully utilized in shared GPU clusters (e.g., Microsoft GPU cluster^[1])

Performance overhead for memory oversubscription

- Unified Virtual Memory (UVM)
 - Swapping GPU memory to host memory

Performance overhead for memory oversubscription

- Unified Virtual Memory (UVM)
 - Swapping GPU memory to host memory
- Cost for memory oversubscription is high
 - 2x ~ 64x longer to complete with 40% oversubcription^[1]

[1] E. Choukse et al., "Buddy Compression: Enabling Larger Memory for Deep Learning and HPC Workloads on GPUs," 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), 2020, pp. 926-939, doi: 10.1109/ISCA45697.2020.00080.

Our approach: Harvesting neighbor GPU memory

Our approach: Harvesting neighbor GPU memory

How to efficiently access neighbor GPU memory?

NVLink provides fast interconnect to neighbor GPU

	PCIe	NVLink
Throughput (GB/s)	12.3	40.1 <mark>(3.3x)</mark>
Latency (µs)	16.7	5.1 <mark>(3.2x)</mark>

2MB Copy

NVLink provides fast interconnect to neighbor GPU

	PCIe	NVLink
Throughput (GB/s)	12.3	40.1 <mark>(3.3</mark> x)
Latency (µs)	16.7	5.1 <mark>(3.2x)</mark>

2MB Copy

NVLink provides fast interconnect to neighbor GPU

	PCIe	NVLink
Throughput (GB/s)	12.3	40.1 <mark>(3.3x)</mark>
Latency (µs)	16.7	5.1 <mark>(3.2x)</mark>

2MB Copy

Unified Virtual Memory

Data-path: Hierarchical Unified Virtual Memory

Goals of Hierarchical Unified Virtual Memory

Reducing performance cost of memory oversubscription

Effective Harvesting

Harvest small and temporarily available spare memory of neighbor GPU Reduce eviction/fetch latency with spare memory

Minimal Interference

Minimize performance impact of workloads running in neighbor GPU

Framework-agnostic

No modification of applications or frameworks

Memory manager for HUVM: memHarvester

Centralized coordinator for data-path in HUVM

Hiding eviction latency
 Reducing fetch latency
 Hiding fetch latency

Effective Harvesting Minimal Interference Framework-agnostic

Effective Harvesting

Minimal Interference \checkmark

2. Reducing fetch latency

3. Hiding fetch latency

Effective Harvesting
Minimal Interference

Minimal Interference

Effective Harvesting Minimal Interference

 \checkmark

2. Reducing fetch latency

Effective Harvesting

Minimal Interference

Framework-agnostic

2. Reducing fetch latency

Effective Harvesting

Minimal Interference

2. Reducing fetch latency

Effective Harvesting

Minimal Interference

2. Reducing fetch latency

Effective Harvesting

Minimal Interference

2. Reducing fetch latency

Effective Harvesting

Minimal Interference

2. Reducing fetch latency

Effective Harvesting

Minimal Interference

Framework-agnostic

2. Reducing fetch latency

2. Reducing fetch latency

Effective Harvesting

Minimal Interference

Framework-agnostic

2. Reducing fetch latency

Effective Harvesting

Minimal Interference

2. Reducing fetch latency

2. Reducing fetch latency

Goals of Hierarchical Unified Virtual Memory

Reducing performance cost of memory oversubscription

Effective Harvesting

Harvest small and temporarily available spare memory of neighbor GPU Reduce eviction/fetch latency with spare memory

Minimal Interference

Minimize performance impact of workloads running in neighbor GPU

Framework-agnostic

No modification of applications or frameworks

Memory manager for HUVM: memHarvester

Centralized coordinator for data-path in HUVM

Evaluation

System configuration (AWS p3.8xlarge)

GPU	NVIDIA V100 (x4) (16 GB each) (Connected through NVLink bridge)
Processors	Intel Xeon Skylake vCPU (x32)
Memory	224GB DDR4
Driver Version	NVIDIA Driver 460.67

Benchmarks

- cuGraph (version 21.12)
- PyTorch (version 1.10.1)

Workload running scenarios

Case-A (1 harvests 3)

Case-B (2 harvests 2)

Case-C (3 harvests 1)

Individual technique performance breakdown

Individual technique performance breakdown

Sensitivity to size of spare memory

46

Conclusion

Problem	Resource imbalance in shared multi-GPU server Significant performance overhead for memory oversubscription
Approach	 Spill fraction of oversubscription to neighbor GPUs Build new data-path with fast interconnect (NVLink) Propose memory manager for HUVM
Result	Hierarchically unified virtual memory (w/ memory manager) Performance improvement compared to naive UVM 3x 1 W/ small fraction of spare memory W/ Less performance interference <a href="https://www.uc.eou/linearity-to-tage-to-ta</th>