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Motivation: Transformer Applications

I am Happy Transformer

I am Unhappy Transformer

• Sentiment Analysis



Motivation: Security Concerns

Ice is Frosty Transformer

Ice is Cold Transformer

Ice is Frigid Transformer

• Synonym Substitution Attack



Motivation: Transformer Verification

Performance challenge:
• Second-level latency of transformer verification
• v.s. Millisecond-level latency of standard transformers

Need efficiency!



Challenges: Unique Computation Patterns

Irregular & 50% sparsity
• Heavy redundancy with dense computation
• Too dense for sparse computation (e.g., cuSPARSE)



Computation Patterns

Cold

Frosty

Frigid

Word Embeddings 
of Synonyms

Input linear bound Output linear bound



Computation Patterns

1 ≤ 𝑥! ≤ 4
−2 ≤ 𝑥" ≤ 4

Given a linear layer:         𝑦 = 2 ∗ 𝑥! − 𝑥"

Transformer Inference: 

𝑥! = 3, 𝑥" = 1 𝑦 = 2 ∗ 𝑥! − 𝑥" = 5

Transformer Verification: 
2 ≤ 2 ∗ 𝑥! ≤ 8
−4 ≤ −𝑥" ≤ 2
−2 ≤ 𝑦 ≤ 10

High Irregularity!



• Lack of support for unique computing patterns
• Existing DL frameworks are designed for standard NN.

• Verification shows different computing pattern.

• Lack of framework support for verifying diverse NN layers.
• Transformer verification shows large diversity in the bound computation.

• Lack of verification-specialized adaptability towards modern GPUs.
• Transformer verification involves memory-intensive operations.

• Existing DL frameworks only focus on computation-intensive operations.

Challenges



Overview



Sematic-aware Computation 
Graph Transformation



Memory Access pattern of transformer verification  

Intensive global memory access

Sematic-aware Computation Graph Transformation



Sematic-aware Computation Graph Transformation



Sematic-aware Computation Graph Transformation



Sematic-aware Computation Graph Transformation



Verification-Specialized Kernel Crafter



Diversity across Verification Designs

ReLU

• Adaptive to Input Bounds & Operators



Diversity across Verification Designs

ReLU

• Adaptive to Input Bounds & Operators

Tanh

Hard to Optimize Individual Operators due to Diversity!



Generalized Vector 
Reduction

Generalized 
Elementwise 

Multiplication

Generalized Scalar-
Vector Multiplication

Key Insight: 
Optimize Computation Patterns instead of concrete Operator Verification Deigns

Verification Pattern Categorization



Generalized 
Elementwise 

Multiplication

Key Insight: 
Optimize Computation Patterns instead of concrete Operator Verification Deigns

Verification Pattern Categorization

ReLU Tanh



Workload Adaptive Reduction

Generalized Vector 
Reduction

• Widely exists when verifying various operators
• Naïve approach: Sequential Mode

Sequential Mode
• 1 thread for 32 values
• 32 iterations
• Low parallelism



Sequential Mode
• 1 thread for 32 values
• 32 iterations
• Low parallelism

Parallel Mode
• Exploit GPU hardware properties
• 32 threads for 32 values via _shfl_down_sync
• 5 iterations
• High parallelism

Workload Adaptive Reduction

Generalized Vector 
Reduction



Sharing-oriented Workload Scheduling

Problem: 
Heavy memory overhead during verification

Key idea: 
Exploit GPU memory hierarchies (i.e., register, shared memory, 
and global memory) to effectively reduce memory access.



Sharing-oriented Workload Scheduling



Expert-guided Autotuning 
Optimization



Expert-guided Autotuning Optimization

Goal: 
Effectively incorporate hardware knowledge to find optimal operator 
implementations

Idea: 
• Generate a metafile for each hardware on its properties
• Incorporate this metafile to a cost model for tuning verification operators



Expert-guided Autotuning Optimization
Rule-based Expert Knowledge Metafile
• Hard rule for hardware limitation (e.g., maximal shared memory size, 

maximal #register per thread)
• Soft rule for trade-off related to hardware properties (e.g., #SM, 

#threads per SM)

Expert-guided Cost Model
• Phase-1: Estimate shared memory and register usage & skip candidates 

that violates hard rules.
• Phase-2: 
• Train a cost model
• Consume both soft rules for hardware properties and tuning knobs 

(e.g., tiling sizes)
• Predict best candidates



Evaluation



Evaluation: End-to-End Benefits

We achieve around 2.5x speedup over Pytorch



Evaluation: Per-layer Benefits
• Matrix Multiplication



Questions?

The project is open-sourced at:
https://github.com/BoyuanFeng/Faith

https://github.com/BoyuanFeng/Faith

