
Faith: An Efficient Framework for Transformer
Verification on GPUs

Boyuan Feng, Tianqi Tang, Yuke Wang, Zhaodong Chen,
Zheng Wang, Shu Yang, Yuan Xie, Yufei Ding

Motivation: Transformer Applications

I am Happy Transformer

I am Unhappy Transformer

• Sentiment Analysis

Motivation: Security Concerns

Ice is Frosty Transformer

Ice is Cold Transformer

Ice is Frigid Transformer

• Synonym Substitution Attack

Motivation: Transformer Verification

Performance challenge:
• Second-level latency of transformer verification
• v.s. Millisecond-level latency of standard transformers

Need efficiency!

Challenges: Unique Computation Patterns

Irregular & 50% sparsity
• Heavy redundancy with dense computation
• Too dense for sparse computation (e.g., cuSPARSE)

Computation Patterns

Cold

Frosty

Frigid

Word Embeddings
of Synonyms

Input linear bound Output linear bound

Computation Patterns

1 ≤ 𝑥! ≤ 4
−2 ≤ 𝑥" ≤ 4

Given a linear layer: 𝑦 = 2 ∗ 𝑥! − 𝑥"

Transformer Inference:

𝑥! = 3, 𝑥" = 1 𝑦 = 2 ∗ 𝑥! − 𝑥" = 5

Transformer Verification:
2 ≤ 2 ∗ 𝑥! ≤ 8
−4 ≤ −𝑥" ≤ 2
−2 ≤ 𝑦 ≤ 10

High Irregularity!

• Lack of support for unique computing patterns
• Existing DL frameworks are designed for standard NN.

• Verification shows different computing pattern.

• Lack of framework support for verifying diverse NN layers.
• Transformer verification shows large diversity in the bound computation.

• Lack of verification-specialized adaptability towards modern GPUs.
• Transformer verification involves memory-intensive operations.

• Existing DL frameworks only focus on computation-intensive operations.

Challenges

Overview

Sematic-aware Computation
Graph Transformation

Memory Access pattern of transformer verification

Intensive global memory access

Sematic-aware Computation Graph Transformation

Sematic-aware Computation Graph Transformation

Sematic-aware Computation Graph Transformation

Sematic-aware Computation Graph Transformation

Verification-Specialized Kernel Crafter

Diversity across Verification Designs

ReLU

• Adaptive to Input Bounds & Operators

Diversity across Verification Designs

ReLU

• Adaptive to Input Bounds & Operators

Tanh

Hard to Optimize Individual Operators due to Diversity!

Generalized Vector
Reduction

Generalized
Elementwise

Multiplication

Generalized Scalar-
Vector Multiplication

Key Insight:
Optimize Computation Patterns instead of concrete Operator Verification Deigns

Verification Pattern Categorization

Generalized
Elementwise

Multiplication

Key Insight:
Optimize Computation Patterns instead of concrete Operator Verification Deigns

Verification Pattern Categorization

ReLU Tanh

Workload Adaptive Reduction

Generalized Vector
Reduction

• Widely exists when verifying various operators
• Naïve approach: Sequential Mode

Sequential Mode
• 1 thread for 32 values
• 32 iterations
• Low parallelism

Sequential Mode
• 1 thread for 32 values
• 32 iterations
• Low parallelism

Parallel Mode
• Exploit GPU hardware properties
• 32 threads for 32 values via _shfl_down_sync
• 5 iterations
• High parallelism

Workload Adaptive Reduction

Generalized Vector
Reduction

Sharing-oriented Workload Scheduling

Problem:
Heavy memory overhead during verification

Key idea:
Exploit GPU memory hierarchies (i.e., register, shared memory,
and global memory) to effectively reduce memory access.

Sharing-oriented Workload Scheduling

Expert-guided Autotuning
Optimization

Expert-guided Autotuning Optimization

Goal:
Effectively incorporate hardware knowledge to find optimal operator
implementations

Idea:
• Generate a metafile for each hardware on its properties
• Incorporate this metafile to a cost model for tuning verification operators

Expert-guided Autotuning Optimization
Rule-based Expert Knowledge Metafile
• Hard rule for hardware limitation (e.g., maximal shared memory size,

maximal #register per thread)
• Soft rule for trade-off related to hardware properties (e.g., #SM,

#threads per SM)

Expert-guided Cost Model
• Phase-1: Estimate shared memory and register usage & skip candidates

that violates hard rules.
• Phase-2:
• Train a cost model
• Consume both soft rules for hardware properties and tuning knobs

(e.g., tiling sizes)
• Predict best candidates

Evaluation

Evaluation: End-to-End Benefits

We achieve around 2.5x speedup over Pytorch

Evaluation: Per-layer Benefits
• Matrix Multiplication

Questions?

The project is open-sourced at:
https://github.com/BoyuanFeng/Faith

https://github.com/BoyuanFeng/Faith

