Faith: An Efficient Framework for Transformer Verification on GPUs

Boyuan Feng, Tianqi Tang, Yuke Wang, Zhaodong Chen, Zheng Wang, Shu Yang, Yuan Xie, Yufei Ding

Motivation: Transformer Applications

Sentiment Analysis

Motivation: Security Concerns

Synonym Substitution Attack

Motivation: Transformer Verification

Performance challenge:

- Second-level latency of transformer verification
- v.s. Millisecond-level latency of standard transformers

Need efficiency!

Challenges: Unique Computation Patterns

Irregular & 50% sparsity

- Heavy redundancy with dense computation
- Too dense for sparse computation (e.g., cuSPARSE)

Computation Patterns

Word Embeddings of Synonyms Input linear bound

Output linear bound

Computation Patterns

Given a linear layer:
$$y = 2 * x_1 - x_2$$

Transformer Inference:

$$x_1 = 3, x_2 = 1$$

$$y = 2$$

$$= 2 * x_1 - x_2 = 5$$

Transformer Verification:

High Irregularity!

Challenges

Lack of support for unique computing patterns

- Existing DL frameworks are designed for standard NN.
- Verification shows different computing pattern.

• Lack of framework support for verifying diverse NN layers.

• Transformer verification shows large diversity in the bound computation.

• Lack of verification-specialized adaptability towards modern GPUs.

- Transformer verification involves memory-intensive operations.
- Existing DL frameworks only focus on computation-intensive operations.

Overview

Memory Access pattern of transformer verification

Verification-Specialized Kernel Crafter

Diversity across Verification Designs

Adaptive to Input Bounds & Operators

Diversity across Verification Designs

Adaptive to Input Bounds & Operators

Hard to Optimize Individual Operators due to Diversity! $_{\rm UC\,SANTA\,BARBARA}$

Verification Pattern Categorization

Key Insight:

Optimize Computation Patterns instead of concrete Operator Verification Deigns

Generalized Vector Reduction

$$y_i = reduction(\vec{x}_i) = \sum_{j=1}^n f(x_{i,j}), \ i \in \{1, 2, \cdots, m\}$$

Generalized Elementwise Multiplication

Generalized Scalar-Vector Multiplication

$$y_{i,j} = f(l_{i,j}, u_{i,j}) * x_{i,j}, i \in \{1, 2, \cdots, m\}, j \in \{1, 2, \cdots, n\}$$

$$\vec{y}_i = f(s_i) * \vec{x}_i = [f(s_i) * x_{i,1}, f(s_i) * x_{i,2}, \cdots, f(s_i) * x_{i,n}],$$

Verification Pattern Categorization

Key Insight:

Optimize Computation Patterns instead of concrete Operator Verification Deigns

Generalized $y_{i,j} = f(l_{i,j}, u_{i,j}) * x_{i,j}, i \in \{1, 2, \dots, m\}, j \in \{1, 2, \dots, n\}$ Elementwise **Multiplication** Output v Output y $\mathbf{y} = \mathbf{k}_1 \mathbf{x}$ Y = k * X + b $y = k_2 * x + b_2$ Input x \mathbf{X}_{u} \mathbf{X}_1 \mathbf{X}_1 \mathbf{X}_{u} y = 0 Input x ReLU Tanh

Workload Adaptive Reduction

Generalized Vector Reduction

$$y_i = reduction(\vec{x}_i) = \sum_{j=1}^n f(x_{i,j}), \ i \in \{1, 2, \cdots, m\}$$

UC SANTA BARBARA

- Widely exists when verifying various operators
- Naïve approach: Sequential Mode

Sequential Mode

- 1 thread for 32 values
- 32 iterations
- Low parallelism

Workload Adaptive Reduction

Generalized Vector Reduction

$$y_i = reduction(\vec{x}_i) = \sum_{j=1}^n f(x_{i,j}), \ i \in \{1, 2, \cdots, m\}$$

Sequential Mode

- 1 thread for 32 values
- 32 iterations
- Low parallelism

Parallel Mode

- Exploit GPU hardware properties
- 32 threads for 32 values via _shfl_down_sync
- 5 iterations
- High parallelism

Sharing-oriented Workload Scheduling

Problem:

Heavy memory overhead during verification

Key idea:

Exploit GPU memory hierarchies (i.e., register, shared memory, and global memory) to effectively reduce memory access.

Sharing-oriented Workload Scheduling

Expert-guided Autotuning Optimization

Expert-guided Autotuning Optimization

Goal:

Effectively incorporate hardware knowledge to find optimal operator implementations

Idea:

- Generate a metafile for each hardware on its properties
- Incorporate this metafile to a cost model for tuning verification operators

Expert-guided Autotuning Optimization

Rule-based Expert Knowledge Metafile

- <u>Hard rule</u> for hardware limitation (e.g., maximal shared memory size, maximal #register per thread)
- <u>Soft rule</u> for trade-off related to hardware properties (e.g., #SM, #threads per SM)

Expert-guided Cost Model

- <u>Phase-1</u>: Estimate shared memory and register usage & skip candidates that violates <u>hard rules</u>.
- <u>Phase-2</u>:
 - Train a cost model
 - Consume both <u>soft rules</u> for hardware properties and tuning knobs (e.g., tiling sizes)
 - Predict best candidates

Evaluation

Evaluation: End-to-End Benefits

We achieve around 2.5x speedup over Pytorch

Evaluation: Per-layer Benefits

Matrix Multiplication

Questions?

The project is open-sourced at:

https://github.com/BoyuanFeng/Faith

