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Motivation

Stream Processing Engines (SPEs) are widely adopted for real-time processing
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Motivation

SPEs usually call for dynamic rescaling due to varying workloads[1]

3

Rescaling in SPEs usually comes with state migration

[1] Vasiliki Kalavri, et al. Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming  dataflows. OSDI’18.



• ① Full Restart & ② Partial Pause

 Related works：Spark (SOSP’13), Heron(SIGMOD’15), Flink(VLDB’17), Flux(ICDE’03), Seep(SIGMOD’13)

 Method: Pauses and resumes whole or part of the task when redistributing states

 Shortcomings: blocks processing and causes latency spikes during rescaling

• ③ Replicated-Dataflow

 Related works：ChronoStream(ICDE’15), Gloss(ASPLOS’18)

 Method: Executes a new dataflow in parallel with the old one until finishing the state migration

 Shortcomings: high resource usage during rescaling

• ④ Proactive

 Related Work：Megaphone(VLDB’19), Rhino(SIGMOD’20)

 Method: Adds extra behavior to non-rescaling periods to relieve the pressure during state migration 

 Shortcomings: incurs extra overhead to a non-rescaling dataflow

Related Work
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Existing state migration approaches suffer from latency

spikes, or high resource usage, or major disruptions 

Common limitations: not taking into account the order 

in which operator state migrates



Prioritized Migration
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Example: a key-count stream processing job



Prioritized Migration
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•Wait for the arrival of its corresponding state

•Block subsequent records in the queue



Prioritized Migration
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•Block all records until the migration ends



Prioritized Migration
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•Minimize the time spent in the waiting queue 



Prioritized Migration
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•Minimize the time spent in the waiting queue 

Prioritized Migration: 

• Hot keys: those being processed or about to be processed 

by downstream operator tasks

• State of hot keys needs to be prioritized so that the stream 

processing proceeds without blocking



Meces: Design and Mechanisms
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Meces: On-the-fly Rescaling via Prioritized State Migration

• Fetch-on-demand state accessing during rescaling

• Coordinated by control messages*

* Inspired by previous works:

[1] Paris Carbone, et al. Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint arXiv:1506.08603, 2015. 

[2] Luo Mai, et al. Chi: A scalable and programmable control plane for distributed stream processing systems. PVLDB ’18

[3] Bonaventura Del Monte, et al. Rhino: Effcient management of very large distributed state for stream processing engines. SIGMOD ’20



Meces: Design and Mechanisms
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Fetch-on-demand State Accessing



Meces: Design and Mechanisms
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Fetch-on-demand State Accessing
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(1) Triggering controlling messages 
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Fetch-on-demand State Accessing
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Fetch-on-demand State Accessing
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Maintaining Exactly-once Semantics during the Migration Stage.



Meces: Design and Mechanisms
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Finer Granularity of State Migration

Split Key-groups into Sub-groups



Meces: Design and Mechanisms
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Finer Granularity of State Migration

Split one Migration stage into Gradual-Fetch steps



Meces: Design and Mechanisms
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Meces System Architecture

• Non-intrusive design: Not affecting 

non-rescaling periods 

• Runtime code transparent to users:  

Little effort for code migration



Evaluation
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Latency Performance during Rescaling

The latency peak of Meces is significantly lower.

Scenario

• Key-count job

• Scale out after running for 600s

Compared Systems

• Flink (stopping the whole job when rescaling)

• Order-Unaware (online block-based state migration 

without order prioritization)



Evaluation
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Latency Performance during Rescaling

Meces lowers the latency 

peak by orders of magnitude.

Workload

• NEXMark Q1~Q8

NEXMark Q1 NEXMark Q2 NEXMark Q3

NEXMark Q4 NEXMark Q5 NEXMark Q6

NEXMark Q7 NEXMark Q8



Evaluation
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Time breakdown during Rescaling
Workload

• Key-count Job

(a) Order-Unaware (b) Meces (c) Distribution of Migration-Cost 

• Long-duration blocks are converted into short-duration fetch operations.

• Reducing the queuing cost for subsequent records.



Evaluation
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Comparison with Megaphone[VLDB’19]
Workload

• Key-count Job

• Meces incurs no overhead during non-rescaling

• Meces reduces latency peak significantly during rescaling 

(a) Megaphone on Flink (b) Meces



Evaluation
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Comparison with Rhino[SIGMOD’20]
Workload

• Key-count Job

• Meces reduces latency peak by one magnitude during rescaling 

• Meces incurs no network overhead during non-rescaling

(a) Rhino on Flink (b) Order-Unaware (c) Meces Network overhead of Rhino 



Conclusion

• Meces: an on-the-fly rescaling mechanism for stateful distributed 

stream processing engines

 Prioritized migration of hot states 

 Coordination protocol based on control messages

 A hierarchical state data organization and a gradual state migration

 Implemented on top of Apache Flink

24



Thank You!

Rong Gu @ Nanjing University

gurong@nju.edu.cn


