
Meces: Latency-efficient Rescaling via Prioritized State Migration

for Stateful Distributed Stream Processing Systems

Rong Gu, Han Yin, Weichang Zhong, Chunfeng Yuan, Yihua Huang

State Key Laboratory for Novel Software Technology, Nanjing University, China

Motivation

Stream Processing Engines (SPEs) are widely adopted for real-time processing

2

……

……

……

Fraud Detection

Log Monitoring

Sentiment Analysis

IoT Applications

……

Data Streams SPE Real-time Applications

Motivation

SPEs usually call for dynamic rescaling due to varying workloads[1]

3

Rescaling in SPEs usually comes with state migration

[1] Vasiliki Kalavri, et al. Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows. OSDI’18.

• ① Full Restart & ② Partial Pause

 Related works：Spark (SOSP’13), Heron(SIGMOD’15), Flink(VLDB’17), Flux(ICDE’03), Seep(SIGMOD’13)

 Method: Pauses and resumes whole or part of the task when redistributing states

 Shortcomings: blocks processing and causes latency spikes during rescaling

• ③ Replicated-Dataflow

 Related works：ChronoStream(ICDE’15), Gloss(ASPLOS’18)

 Method: Executes a new dataflow in parallel with the old one until finishing the state migration

 Shortcomings: high resource usage during rescaling

• ④ Proactive

 Related Work：Megaphone(VLDB’19), Rhino(SIGMOD’20)

 Method: Adds extra behavior to non-rescaling periods to relieve the pressure during state migration

 Shortcomings: incurs extra overhead to a non-rescaling dataflow

Related Work

4

• ① Full Restart & ② Partial Pause

 Related works：Spark (SOSP’13), Heron(SIGMOD’15), Flink(VLDB’17), Flux(ICDE’03), Seep(SIGMOD’13)

 Method: Pauses and resumes whole or part of the task when redistributing states

 Shortcomings: blocks processing and causes latency spikes

• ③ Replicated-Dataflow

 Related works：ChronoStream(ICDE’15), Gloss(ASPLOS’18)

 Method: Executes a new dataflow in parallel with the old one until finishing the state migration

 Shortcomings: high resource usage during rescaling

• ④ Proactive

 Related Work：Megaphone(VLDB’19), Rhino(SIGMOD’20)

 Method: Adds extra behavior to non-rescaling periods to relieve the pressure during state migration

 Shortcomings: incurs extra overhead to a non-rescaling dataflow

Related Work

5

Existing state migration approaches suffer from latency

spikes, or high resource usage, or major disruptions

Common limitations: not taking into account the order

in which operator state migrates

Prioritized Migration

6

Example: a key-count stream processing job

Prioritized Migration

7

•Wait for the arrival of its corresponding state

•Block subsequent records in the queue

Prioritized Migration

8

•Block all records until the migration ends

Prioritized Migration

9

•Minimize the time spent in the waiting queue

Prioritized Migration

10

•Minimize the time spent in the waiting queue

Prioritized Migration:

• Hot keys: those being processed or about to be processed

by downstream operator tasks

• State of hot keys needs to be prioritized so that the stream

processing proceeds without blocking

Meces: Design and Mechanisms

11

Meces: On-the-fly Rescaling via Prioritized State Migration

• Fetch-on-demand state accessing during rescaling

• Coordinated by control messages*

* Inspired by previous works:

[1] Paris Carbone, et al. Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint arXiv:1506.08603, 2015.

[2] Luo Mai, et al. Chi: A scalable and programmable control plane for distributed stream processing systems. PVLDB ’18

[3] Bonaventura Del Monte, et al. Rhino: Effcient management of very large distributed state for stream processing engines. SIGMOD ’20

Meces: Design and Mechanisms

12

Fetch-on-demand State Accessing

Meces: Design and Mechanisms

13

Fetch-on-demand State Accessing

A

B

S1

S2

C

96

6

96

(1) Triggering controlling messages

Meces: Design and Mechanisms

14

Fetch-on-demand State Accessing

A

B

S1

S2

C

9

6
6

9

6

State of 6

(2) Aligning phase

Meces: Design and Mechanisms

15

Fetch-on-demand State Accessing

A

B

S1

S2

C

6

6
97

1

1
2
3
4
5
6
7
8
9
10
11
12

External

KV Store

(3) Aligned phase

Maintaining Exactly-once Semantics during the Migration Stage.

Meces: Design and Mechanisms

16

Finer Granularity of State Migration

Split Key-groups into Sub-groups

Meces: Design and Mechanisms

17

Finer Granularity of State Migration

Split one Migration stage into Gradual-Fetch steps

Meces: Design and Mechanisms

18

Meces System Architecture

• Non-intrusive design: Not affecting

non-rescaling periods

• Runtime code transparent to users:

Little effort for code migration

Evaluation

19

Latency Performance during Rescaling

The latency peak of Meces is significantly lower.

Scenario

• Key-count job

• Scale out after running for 600s

Compared Systems

• Flink (stopping the whole job when rescaling)

• Order-Unaware (online block-based state migration

without order prioritization)

Evaluation

20

Latency Performance during Rescaling

Meces lowers the latency

peak by orders of magnitude.

Workload

• NEXMark Q1~Q8

NEXMark Q1 NEXMark Q2 NEXMark Q3

NEXMark Q4 NEXMark Q5 NEXMark Q6

NEXMark Q7 NEXMark Q8

Evaluation

21

Time breakdown during Rescaling
Workload

• Key-count Job

(a) Order-Unaware (b) Meces (c) Distribution of Migration-Cost

• Long-duration blocks are converted into short-duration fetch operations.

• Reducing the queuing cost for subsequent records.

Evaluation

22

Comparison with Megaphone[VLDB’19]
Workload

• Key-count Job

• Meces incurs no overhead during non-rescaling

• Meces reduces latency peak significantly during rescaling

(a) Megaphone on Flink (b) Meces

Evaluation

23

Comparison with Rhino[SIGMOD’20]
Workload

• Key-count Job

• Meces reduces latency peak by one magnitude during rescaling

• Meces incurs no network overhead during non-rescaling

(a) Rhino on Flink (b) Order-Unaware (c) Meces Network overhead of Rhino

Conclusion

• Meces: an on-the-fly rescaling mechanism for stateful distributed

stream processing engines

 Prioritized migration of hot states

 Coordination protocol based on control messages

 A hierarchical state data organization and a gradual state migration

 Implemented on top of Apache Flink

24

Thank You!

Rong Gu @ Nanjing University

gurong@nju.edu.cn

