USENIX
ATC 22

2022 USENIX Annual Technical Conference

Meces: Latency-efficient Rescaling via Prioritized State Migration
for Stateful Distributed Stream Processing Systems

Rong Gu, Han Yin, Weichang Zhong, Chunfeng Yuan, Yihua Huang

State Key Laboratory for Novel Software Technology, Nanjing University, China

3) J,
7z
‘B éj A TN
8 h\\ﬁ’

NANJING UNIVERSITY

Motivation

Stream Processing Engines (SPEs) are widely adopted for real-time processing

4 A - A
[- -’ Fraud Detection
, . Log Monitoring
- — .J ‘ ‘ Sentiment Analysis
. e -\ loT Applications

-
-
-
-

Data Streams SPE Real-time Applications

Motivation

SPEs usually call for dynamic rescaling due to varying workloads[1]

--=- |Input rate —— Processing Rate
A —-—
A 2 \ S | .

o el {Scaleyv Sl I ca eN_

© — Bl R ol S

o
. >

Time

Rescaling in SPEs usually comes with state migration

3
[1] Vasiliki Kalavri, et al. Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows. OSDI’18.

Related Work

« (@ Full Restart & @ Partial Pause

» Related works: Spark (SOSP’13), Heron(SIGMOD’15), Flink(vLDB’17), Flux(ICDE’03), Seep(SIGMOD’13)
» Method: Pauses and resumes whole or part of the task when redistributing states

» Shortcomings: blocks processing and causes latency spikes during rescaling
« @ Replicated-Dataflow

» Related works: ChronoStream(/ICDE’15), GIoSS(ASPL0OS’18)
» Method: Executes a new dataflow in parallel with the old one until finishing the state migration

» Shortcomings: high resource usage during rescaling
* @ Proactive

» Related Work: Megaphone(vLDB19), Rhino(SIGMOD’20)
» Method: Adds extra behavior to non-rescaling periods to relieve the pressure during state migration

» Shortcomings: incurs extra overhead to a non-rescaling dataflow

Related Work

Existing state migration approaches suffer from latency
spikes, or high resource usage, or major disruptions

' N ITALS A VVNIT IT\J = S 1T T T TN vulll‘lvl—ll— lv/’ Vlvuv‘l TNJT e N7 \F 'V/

_ /
4)
Common limitations: not taking into account the order
In which operator state migrates

1 vz

Prioritized Migration

Example: a key-count stream processing job

Prioritized Migration

e T T T \
I

&3 Incoming record with key x
 ® Migrated states of key x

Processing result of record with key x
Processing latency is y unit time |

—— e e e o e e e S s s e S S S e e e e S S s e S e S S S e S e e— —

Latency (ms)
H = B
o

o

- ~
>

' ~
>

s ~\

Input Records

L

L

Migrated States

| P@PP |

ol ol Ol

Processing Results

S

o
'y

o~

0 200 400 600 800
Time (ms)

o
™

(a) In order

0 200 400 600 800
Time (ms)

(b) Worst

« Wait for the arrival of its corresponding state
*Block subsequent records in the queue

0 200 400 600 800
Time (ms)

(c) Prioritized

Prioritized Migration

Latency (ms)

.

e T T T \
I

&3 Incoming record with key x

Processing result of record with key x

 ® Migrated states of key x @ Processing latency is y unit time |
BOEEE ------:h-----
Input Records

ORORCNCORO) D000, D000

Migrated States

. PP

Processing Results

o
'y

0 200 400 600 80(
Time (ms)

o
™

o
o

(a) In order

0 200 400 600 800
Time (ms)

(b) Worst

0 200 400 600 800
Time (ms)

(c) Prioritized

*Block all records until the migration ends

Prioritized Migration

‘& In Eor_niﬁg_re-_co_rd_ w_ith_kgy_x_ B éD_Pr_ogesTsﬁg_re_sat:)f_re?:o_rd_thh_kgy_x\l

 ® Migrated states of key x Processing latency is y unit time |

—— e e e o e e e S s s e S S S e e e e S S s e S e S S S e S e e— —

X
s N e ~\
>

Input Records

L

Migrated States

. PP ||, PPYH | PP,

Processing Results

A L >

0 200 400 600 800 0O 200 400 600 80D O 200 400 600 800
Time (ms) Time (ms) Time (ms)

(a) In order (b) Worst (c) Prioritized

o
'y

Latency (ms)
= S =

o
o

* Minimize the time spent in the waiting queue

9

Prioritized Migration

‘@ Incom iﬁg_re_cc;rd_ w_ith_k(_ay_x_ N Q;@_Pr_(:rc_es::c:»i?1g_re_5l]t_c:uf_re::c;d_thh_k;y_x\|

 ® Migrated states of key x Processing latency is y unit time |
oD E 20EEE [-,-IH Z2OEEEE ‘
Innut Becords i

-

Prioritized Migration:

* Hot keys: those being processed or about to be processed
by downstream operator tasks

« State of hot keys needs to be prioritized so that the stream

\ processing proceeds without blocking

/

10

Meces: Design and Mechanisms

Meces: On-the-fly Rescaling via Prioritized State Migration

 Fetch-on-demand state accessing during rescaling

 Coordinated by control messages*

* Inspired by previous works:

[1] Paris Carbone, et al. Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint arXiv:1506.08603, 2015.

[2] Luo Mai, et al. Chi: A scalable and programmable control plane for distributed stream processing systems. PVLDB ’18

[3] Bonaventura Del Monte, et al. Rhino: Effcient management of very large distributed state for stream processing engines. SIGMOD 20 11

Meces: Design and Mechanisms

Fetch-on-demand State Accessing

Source Count

(a) Instances rescaling

5 5
A
3 3
A 4 4
: :
— 7 — B 7
.
B
10 10
11 C 11
1 12] 12
Current Future
Key Space Key Space

(b) Key space redistribution

12

Meces: Design and Mechanisms

Fetch-on-demand State Accessing

——

@ Operator Instance — Data Channel [6] Data Record with Key

(C: New Operator Instance --» New Data Channel [Migration Message

A
@
\
N\ B
sl6—L°
\
~ \
=~ \

(1) Triggering controlling messages

13

Meces: Design and Mechanisms

Fetch-on-demand State Accessing

__

@ Operator Instance — Data Channel [6] Data Record with Key

i C New Operator Instance --» New Data Channel [Migration Message

\
State of 6 |

(2) Aligning phase

14

Meces: Design and Mechanisms

Fetch-on-demand State Accessing

__

i @ Operator Instance — Data Channel [6] Data Record with Key l

| {C) New Operator Instance --» New Data Channel [Migration Message

Maintaining Exactly-once Semantics during the Migration Stage.

- R Y

15

Meces: Design and Mechanisms

Finer Granularity of State Migration

SubGroup-1 I
SubGroup-2 :
I
|

—_—,—,— — —_—— —_— — — —

SubGroup-1 |
SubGroup-2 :
I
I

_—e—— — ————— ——

............

Split Key-groups into Sub-groups

16

Meces: Design and Mechanisms

Finer Granularity of State Migration

Before Gradual Gradual Gradual Gradual
Migration Migration - 1 Migration - 2 Migration - 3 Migration - 4

Split one Migration stage into Gradual-Fetch steps

17

Meces: Design and Mechanisms

Meces System Architecture

Called by
User Code

Transparent to
User Code

Stream API

State API

SPE Runtime

Non-intrusive design: Not affecting
non-rescaling periods

Runtime code transparent to users:
Little effort for code migration

~

18

Evaluation

Latency Performance during Rescaling

Compared Systems Scenario
* Flink (stopping the whole job when rescaling) « Key-count job
* Order-Unaware (online block-based state migration « Scale out after running for 600s

without order prioritization)

—10° —
o 5104' N
E = 103t '|
= L
sg107 |
< g 101 sl
- 0 .
10 600 700
Time (s)

(a) Native Flink

600 700
Time (s)

(b) Order-Unaware

600 700
Time (s)

(c) Meces

The latency peak of Meces is significantly lower.

19

Evaluation

Latency Performance during Rescaling

EIDS
§104
8 10° H
©
- 102
: |
& 10% iyl Ww.ﬂ‘w%ﬂw"‘ WMWMWA Pt A A\
@ 100
210 600 700 500 700 600 700
Time (s) Time (s) Time (s)
(a) Native Flink (b) Partial-Pause (c) Meces
NEXMark Q1
Elf.)5
=104
g n
810° ‘ ﬂ
3 102 I\ Ww
2 e] WA
glol
8 190
z10 600 700 500 700 600 700
Time (s) Time (s) Time (s)
(a) Native Flink (b) Partial-Pause (c) Meces
NEXMark Q4
£10°
glo¢ =
§ 10° | NAAJ\]\MMN
= 12l [SYPERTE™ MMMJWWMW
®
£
310 600 700 600 700 600 700
Time (s) Time (s) Time (s)
(a) Native Flink (b) Partial-Pause (c) Meces

NEXMark Q7

Workload

- NEXMark Q1~Q8

£ 10°
>10°
§10° \
1/ S [b
g1o0t
g 1090
z10 500 700 00 700 500 700
Time (s) Time (s) Time (s)
(a) Native Flink (b) Partial-Pause (c) Meces
NEXMark Q2
£10°
§~10‘1
£10° \
5 102 M—\J Lt e YA s N i end S
@
g’lUl
£ 100
P 600 700 600 700 600 700
Time (s) Time (s) Time (s)
(a) Native Flink (b) Partial-Pause (c) Meces
NEXMark Q5
EIO5
EIO" N
g10° | | et)
L L R |t
@
E’IO1
3 10
2 10 600 700 600 700 600 700
Time (s) Time (s) Time (s)
(a) Native Flink (b) Partial-Pause (c) Meces

NEXMark Q8

EIO5
z10* .
$10° 'w
©
el |
@ \
210! e
210
P 600 700 600 700 600 700
Time (s) Time (s) Time (s)
(a) Native Flink (b) Partial-Pause (c) Meces
NEXMark Q3
g10°
F10* ’
§ 102 ‘\'.
©
L L R T ‘ \ Wﬂ
g 10t
o 0
z10 600 700 500 700 600 700
Time (s) Time (s) Time (s)
(a) Native Flink (b) Partial-Pause (c) Meces

NEXMark Q6

Meces lowers the latency

peak by orders of magnitude.

20

Evaluation

Workload

Time breakdown during Rescaling . Key-count Job

10K ' | | ' | Em-‘ . Order-U e |
) % Queuing-Cost i @¥ Queuing-Cost ~ & Order-Unaware
o E EEE Job-Cost 400 BN Job-Cost 2 103 W Meces
8 > @wd Migration-Cost ®¥% Migration-Cost (=R
o © 5K . ?1{]
Z8 200 £ 10!
5 3
- = 10°
0 505 510 515 520 525 0 505 510 515 520 525 Sequence of Record Processing Operations
Time (s) Time (s) Blocked by State Migration
(a) Order-Unaware (b) Meces (c) Distribution of Migration-Cost

« Long-duration blocks are converted into short-duration fetch operations.

 Reducing the queuing cost for subsequent records.
21

Evaluation

Workload

Comparison with Megaphone[vLDB 19] Key-count Job

Tg 104 -
L=
=4 > 103} ‘ l _ _
2 S 10% i]
2 % 101 . . MNJWV\/JNN\A/\MM
- 600 800 600 700
Time (s) Time (s)
(a) Megaphone on Flink (b) Meces

 Meces incurs no overhead during non-rescaling
 Meces reduces latency peak significantly during rescaling

22

Evaluation

Workload

Comparison with Rhino[siGMmoD20] . Key-count Job

n

-g- 5 g

=~ 10 - . | g

o 104} l I] I] 5 60% 56%

2 103 - - : :] 2 0

© > (@) 46%

J 10 i] _] ;WWVVM’WW f

% 101} - ; : : - g 40% 35%

— 0 | . | -

g 10 600 700 600 700 600 700 2 1 min 3 min 10 min

< Time (s) Time (s) Time (s) Replication Interval of Rhino
(a) Rhino on Flink (b) Order-Unaware (c) Meces Network overhead of Rhino

 Meces reduces latency peak by one magnitude during rescaling

« Meces incurs no network overhead during non-rescaling
23

Conclusion

 Meces: an on-the-fly rescaling mechanism for stateful distributed

stream processing engines

o Prioritized migration of hot states
o Coordination protocol based on control messages

o A hierarchical state data organization and a gradual state migration

o Implemented on top of Apache Flink

24

Thank You!

Rong Gu @ Nanjing University

gurong@nju.edu.cn

