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Motivation

Stream Processing Engines (SPEs) are widely adopted for real-time processing
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Motivation

SPEs usually call for dynamic rescaling due to varying workloads[1]
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Rescaling in SPEs usually comes with state migration
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[1] Vasiliki Kalavri, et al. Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows. OSDI’18.



Related Work

« (@ Full Restart & @ Partial Pause

» Related works: Spark (SOSP’13), Heron(SIGMOD’15), Flink(vLDB’17), Flux(ICDE’03), Seep(SIGMOD’13)
» Method: Pauses and resumes whole or part of the task when redistributing states

» Shortcomings: blocks processing and causes latency spikes during rescaling
« @ Replicated-Dataflow

» Related works: ChronoStream(/ICDE’15), GIoSS(ASPL0OS’18)
» Method: Executes a new dataflow in parallel with the old one until finishing the state migration

» Shortcomings: high resource usage during rescaling
* @ Proactive

» Related Work: Megaphone(vLDB19), Rhino(SIGMOD’20)
» Method: Adds extra behavior to non-rescaling periods to relieve the pressure during state migration

» Shortcomings: incurs extra overhead to a non-rescaling dataflow



Related Work

Existing state migration approaches suffer from latency
spikes, or high resource usage, or major disruptions
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Common limitations: not taking into account the order
In which operator state migrates
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Prioritized Migration

Example: a key-count stream processing job




Prioritized Migration
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« Wait for the arrival of its corresponding state
*Block subsequent records in the queue
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Prioritized Migration

Latency (ms)
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*Block all records until the migration ends



Prioritized Migration
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* Minimize the time spent in the waiting queue

9



Prioritized Migration
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Prioritized Migration:

* Hot keys: those being processed or about to be processed
by downstream operator tasks

« State of hot keys needs to be prioritized so that the stream

\ processing proceeds without blocking

/

10



Meces: Design and Mechanisms

Meces: On-the-fly Rescaling via Prioritized State Migration

 Fetch-on-demand state accessing during rescaling

 Coordinated by control messages*

* Inspired by previous works:

[1] Paris Carbone, et al. Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint arXiv:1506.08603, 2015.

[2] Luo Mai, et al. Chi: A scalable and programmable control plane for distributed stream processing systems. PVLDB ’18

[3] Bonaventura Del Monte, et al. Rhino: Effcient management of very large distributed state for stream processing engines. SIGMOD 20 11



Meces: Design and Mechanisms

Fetch-on-demand State Accessing

Source Count

(a) Instances rescaling
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(b) Key space redistribution
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Meces: Design and Mechanisms

Fetch-on-demand State Accessing

——————————————————————————————————————————————————————————————————————————

@ Operator Instance — Data Channel [6] Data Record with Key

(C: New Operator Instance --» New Data Channel [ Migration Message

A
@
\
N\ B
sl6—L°
\
~ \
=~ \

(1) Triggering controlling messages
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Meces: Design and Mechanisms

Fetch-on-demand State Accessing

__________________________________________________________________________

@ Operator Instance — Data Channel [6] Data Record with Key

i C New Operator Instance --» New Data Channel [ Migration Message

\
State of 6 |

(2) Aligning phase
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Meces: Design and Mechanisms

Fetch-on-demand State Accessing

__________________________________________________________________________

i @ Operator Instance — Data Channel [6] Data Record with Key l

| {C) New Operator Instance --» New Data Channel [ Migration Message

Maintaining Exactly-once Semantics during the Migration Stage.
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Meces: Design and Mechanisms

Finer Granularity of State Migration
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Split Key-groups into Sub-groups
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Meces: Design and Mechanisms

Finer Granularity of State Migration

Before Gradual Gradual Gradual Gradual
Migration Migration - 1 Migration - 2 Migration - 3 Migration - 4

Split one Migration stage into Gradual-Fetch steps
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Meces: Design and Mechanisms

Meces System Architecture

Called by
User Code

Transparent to
User Code

Stream API

State API

SPE Runtime

Non-intrusive design: Not affecting
non-rescaling periods

Runtime code transparent to users:
Little effort for code migration

~
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Evaluation

Latency Performance during Rescaling

Compared Systems Scenario
* Flink (stopping the whole job when rescaling) « Key-count job
* Order-Unaware (online block-based state migration « Scale out after running for 600s

without order prioritization)
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The latency peak of Meces is significantly lower.
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Evaluation

Latency Performance during Rescaling
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Meces lowers the latency

peak by orders of magnitude.
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Evaluation

Workload

Time breakdown during Rescaling . Key-count Job
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« Long-duration blocks are converted into short-duration fetch operations.

 Reducing the queuing cost for subsequent records.
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Evaluation

Workload

Comparison with Megaphone[vLDB 19] Key-count Job
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 Meces incurs no overhead during non-rescaling
 Meces reduces latency peak significantly during rescaling
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Evaluation

Workload

Comparison with Rhino[siGMmoD20] . Key-count Job
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 Meces reduces latency peak by one magnitude during rescaling

« Meces incurs no network overhead during non-rescaling
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Conclusion

 Meces: an on-the-fly rescaling mechanism for stateful distributed

stream processing engines

o Prioritized migration of hot states
o Coordination protocol based on control messages

o A hierarchical state data organization and a gradual state migration

o Implemented on top of Apache Flink
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Thank You!

Rong Gu @ Nanjing University

gurong@nju.edu.cn



