uKharon

A Membership Service for Microsecond Applications

Rachid Guerraoui, Antoine Murat, Javier Picorel,
Athanasios Xygkis, Huabing Yan, Pengfei Zuo

CPFL W

HUAWEI

The data center is a zoo!

Data
Store

Micro
Service

Micro
Service

Today more than ever, failures are first class citizens!

How do we usually deal with failures?

Using etcd or ZooKeeper

Membership services:

e Arereliable configuration stores

e Update their configuration sequence

e Invalidate old memberships

M1 = {C1}

The problem is NOT solved at the

microsecond scale.

Data
Store

M2 = {C2]

Our Contribution:

e A Microsecond-scale Membership Service
e Detectsfailuresin 15 us

e Updates the membership in 10us

e |nvalidates old membershipsin 25us

uKharon reacts to failures in 50us by leveraging RDMA!

Remote Direct Memory Access (RDMA)

_5 Memory Memory
.ES' A n A
9 1 [1
o
<% = RDMA NIC - Fabric RDMA NIC
Writer Pass.lve
Receiver

Allows ps-scale communication

Detects failures

Updates the membership

Invalidates old memberships

Microsecond-scale failure detection

e Timeouts do not help avoiding false positives

e Not all failures are equal

Process failures:

SIGSEGV, Out-of-Memory, ...

Kernel failures:
Oops, core hang, ...

Catastrophic failures:
Power failure, NIC crash, ...

Byzantine failures:
Buffer overflow, corruption...

Help from kernel — No timeouts

Help from NIC — No timeouts

Catch-all - Timeout-based

Microsecond-scale failure detectors

Process failures Kernel failures

App Send my id A
xupon crash PP Counter
2

Kernel Capture process 8 A

failure Kernel
i RDl\gA

RDMA

NIC

A\ Remote node

CRASH

Take network synchrony out of the equation — fast and accurate failure detection

Detects failures

Updates the membership

Invalidates old memberships

Microsecond-scale replication

Uses Paxos

But optimizes it for RDMA!

Paxos, briefly:

Proposer

propose

RPC

Acceptor

State

min_proposal
accepted_proposal
accepted_value

RPC

def acceptor-rpc(x):
return transform(state, x)

decide

10

One-sided Paxos

Proposer

RDMA-based RPC
def rdma-rpc(x):

ret = transform(state, x)
CAS(state, remote_state)

if CAS failed:
retry

else:
return ret

state = READ(remote_state)

propose

One-sided RDMA

Acceptor

One-sided RDMA

>

State
min_proposal

decide

- accepted_proposal
accepted_value

One-sided RPC allows for

blazing fast consensus!

11

Detects failures

Updates the membership

Invalidates old memberships

12

Membership invalidation Membership Cache

Service Client C

new view

e Whatis the active membership?

e LearnviaActive(Membership) — bool

e Active(M) == true — Mwas active between invoc. and resp.

e Highlatency

use VALUE

How to make Active cheap?

Microsecond-scale leases

e Clientslease Active’sresponse for ~20us

e Renew their lease in the background

e NO synchronized clocks required
o Only bounded clock drift for safety

e Delays view changes by no more than ~20us

Leases make Act1ive take ~40ns

Membership
Service

Client Client

Background Foreground

“active—yes

active—yes

READ
VALUE

use VALUE

Cache

C

14

Detects failures

Updates the membership

Invalidates old memberships

How does it perform?

15

Evaluation: setup

uKharon

Service

oo
s

100 Gbps
Switch

Clients

16

Evaluation: Replicating a KV-Store

{= HERD @ HERD+Mu B uKharon-KV

GET R Failover
: N : i —
5 5 5 6007 3§
= y i B
= i .
>4 47 007
<. !
S : -
3 34 3 200~
; :] & =
5] 5] oL I

uKharon helps beating the state of the art!

Evaluation:; Are leases renewed in time?

.

S

S
]

O
S
1

Timely lease renewal (%)
s g
1

== Mem. Load = 50%

= 65%

e 85%

Net. Load = 30%

Net. Load = 80%

Net. Load = 60%

: Net. Load = 100%

19 21 28 25 27 29

Pttt

19 21 25 25 27 29

Lease duration (us)

Microsecond leases are stable!

18

Conclusion

uKharon:

O

O

O

A membership service for us-fast failover (down to 50us)
Easy to integrate

Only 40ns latency overhead

ARTIFACT ARTIFACT
EVALUATED EVALUATED
Eusenix || gusenix

REPRODUCED

github.com/LPD-EPFL /ukharon

Check out our paper for more details!

19

https://github.com/LPD-EPFL/ukharon

