
uKharon
A Membership Service for Microsecond Applications

Rachid Guerraoui , Antoine Murat , Javier Picorel,
Athanasios Xygkis, Huabing Yan, Pengfei Zuo

Data
Store

Data
Store

App

Data
Store

Cache Micro
Service

Data
Store

Data
Store

Data
Store

Micro
Service

Micro
Service

Micro
Service

Micro
Service

Micro
Service

Micro
Service

Micro
Service

Micro
Service

Cache

Cache

Micro
Service

Micro
Service

Micro
Service

App

The data center is a zoo!

2
Today more than ever, failures are first class citizens!

How do we usually deal with failures?

Using etcd or ZooKeeper

Membership services:

● Are reliable configuration stores

● Update their configuration sequence

● Invalidate old memberships

3

The problem is NOT solved at the

microsecond scale.

M1 = {C1}

Cache
C1

Data
Store

A

A
Cache

C2

M2 = {C2}
B

B

Our Contribution:

4

uKharon reacts to failures in 50us by leveraging RDMA!

● A Microsecond-scale Membership Service

● Detects failures in 15 us

● Updates the membership in 10us

● Invalidates old memberships in 25us

Ap
pl

ic
at

io
n Memory

RDMA NIC A
pp

lic
at

io
n

 Memory

RDMA NICFabric

Writer
Passive

Receiver

Remote Direct Memory Access (RDMA)

5

Allows µs-scale communication

6

Detects failures

Updates the membership

Invalidates old memberships

Microsecond-scale failure detection

● Timeouts do not help avoiding false positives

● Not all failures are equal

7

Process failures:
SIGSEGV, Out-of-Memory, …

Kernel failures:
Oops, core hang, …

Catastrophic failures:
Power failure, NIC crash, …

Byzantine failures:
Buffer overflow, corruption…

Help from kernel → No timeouts

Help from NIC → No timeouts

Catch-all → Timeout-based

App

Kernel

RDMA
NIC

Remote node

Microsecond-scale failure detectors
Process failures

8

App

Kernel

RDMA
NIC

Kernel failures

Send my id
upon crash

Capture process
failure

CRASH

Counter
0

Take network synchrony out of the equation → fast and accurate failure detection

12

9

Detects failures

Updates the membership

Invalidates old memberships

Microsecond-scale replication

● Uses Paxos

● But optimizes it for RDMA!
● Paxos, briefly:

10

Proposer

Acceptor

propose

RPC

RPC

decide

def acceptor-rpc(x):
 return transform(state, x)

State
min_proposal
accepted_proposal
accepted_value

One-sided Paxos

11

Proposer

Acceptor

propose

One-sided RDMA

decide

State
min_proposal
accepted_proposal
accepted_value

RDMA-based RPC
def rdma-rpc(x):
 state = READ(remote_state)
 ret = transform(state, x)
 CAS(state, remote_state)

 if CAS failed:
 retry
 else:
 return ret

One-sided RDMA

One-sided RPC allows for

blazing fast consensus!

12

Detects failures

Updates the membership

Invalidates old memberships

Membership invalidation

● What is the active membership?

● Learn via Active(Membership) → bool

13

Membership
Service Client

new view
M = {C}

Cache
C

active M?

yes
READ

VALUE

use VALUE

active M?

yes

How to make Active cheap?

● Active(M) == true → M was active between invoc. and resp.

● High latency

Membership
Service

Client
Background

Cache
C

Client
Foreground

active M?

yes

Microsecond-scale leases

● Clients lease Active’s response for ~20µs

● Renew their lease in the background

14

active→yes
READ

VALUE
active→yes

use VALUE

Leases make Active take ~40ns

● NO synchronized clocks required

○ Only bounded clock drift for safety

● Delays view changes by no more than ~20µs

active M?

yes

15

Detects failures

Updates the membership

Invalidates old memberships

How does it perform?

Evaluation: setup

16

uKharon

Server 1

Server 2

Server 3

Service

Server 4

Server 5

Clients

Server 6

Server 7

Server 8

100 Gbps
Switch

Evaluation: Replicating a KV-Store

17uKharon helps beating the state of the art!

Evaluation: Are leases renewed in time?

18Microsecond leases are stable!

Conclusion

19

● uKharon:

○ A membership service for µs-fast failover (down to 50µs)

○ Easy to integrate

○ Only 40ns latency overhead

github.com/LPD-EPFL/ukharon

Check out our paper for more details!

https://github.com/LPD-EPFL/ukharon

