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The data center is a zoo!
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Today more than ever, failures are first class citizens!



How do we usually deal with failures?

Using etcd or ZooKeeper

Membership services:

● Are reliable configuration stores

● Update their configuration sequence

● Invalidate old memberships
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The problem is NOT solved at the 

microsecond scale.
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Our Contribution:
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uKharon reacts to failures in 50us by leveraging RDMA!

● A Microsecond-scale Membership Service

● Detects failures in 15 us

● Updates the membership in 10us

● Invalidates old memberships in 25us
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Allows µs-scale communication
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Detects failures

Updates the membership

Invalidates old memberships



Microsecond-scale failure detection

● Timeouts do not help avoiding false positives

● Not all failures are equal
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Process failures:
SIGSEGV, Out-of-Memory, …

Kernel failures:
Oops, core hang, …

Catastrophic failures:
Power failure, NIC crash, …

Byzantine failures:
Buffer overflow, corruption…

Help from kernel → No timeouts

Help from NIC → No timeouts

Catch-all → Timeout-based
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Take network synchrony out of the equation → fast and accurate failure detection
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Detects failures

Updates the membership

Invalidates old memberships



Microsecond-scale replication

● Uses Paxos

● But optimizes it for RDMA!
● Paxos, briefly:
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def acceptor-rpc(x):
 return transform(state, x)

State
min_proposal
accepted_proposal
accepted_value



One-sided Paxos
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Proposer

Acceptor

propose

One-sided RDMA

decide

State
min_proposal
accepted_proposal
accepted_value

# RDMA-based RPC
def rdma-rpc(x):
 state = READ(remote_state)
 ret = transform(state, x)
 CAS(state, remote_state)
 
 if CAS failed:
  retry
 else:
  return ret

One-sided RDMA

One-sided RPC allows for 

blazing fast consensus!
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Detects failures

Updates the membership

Invalidates old memberships



Membership invalidation

● What is the active membership?

● Learn via Active(Membership) → bool
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Membership 
Service Client

new view
M = {C}

Cache
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active M?
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active M?

yes

How to make Active cheap?

● Active(M) == true  → M was active between invoc. and resp.

● High latency
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Microsecond-scale leases

● Clients lease Active’s response for ~20µs

● Renew their lease in the background
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active→yes
READ

VALUE
active→yes

use VALUE

Leases make Active take ~40ns

● NO synchronized clocks required

○ Only bounded clock drift for safety

● Delays view changes by no more than ~20µs

active M?

yes
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Detects failures

Updates the membership

Invalidates old memberships

How does it perform?



Evaluation: setup
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Evaluation: Replicating a KV-Store

17uKharon helps beating the state of the art!



Evaluation: Are leases renewed in time?

18Microsecond leases are stable!



Conclusion
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● uKharon:

○ A membership service for µs-fast failover (down to 50µs)

○ Easy to integrate

○ Only 40ns latency overhead

github.com/LPD-EPFL/ukharon

Check out our paper for more details!

https://github.com/LPD-EPFL/ukharon

