
Whale: Efficient Giant Model Training
over Heterogeneous GPUs

Xianyan Jia, Le Jiang, Ang Wang, Wencong Xiao, Ziji Shi, Jie Zhang,
Xinyuan Li, Langshi Chen, Yong Li, Zhen Zheng, Xiaoyong Liu, Wei Lin

Alibaba Group
07/12/2022

Model-Size Increasing

AI and Memory Wall: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
2

OPT-175B

Memory & Bandwidth Wall

AI and Memory Wall: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

• High communication overhead for Data Parallel

• GPU memory limit

3

Distributed Training Strategies

Data Parallelism Pipeline Parallelism Tensor Model
Parallelism

4

Data + Pipeline

- Pure pipeline parallelism does not scale well with more GPUs

- Nested DP with pipeline
5

Data + Pipeline + Tensor

Apply different strategies to different model parts.

Tensor Model
Parallelism

Data
Parallelism

ResNet50 #class=100K
DP vs Hybrid

90MB

782MB

6

Heterogeneity in GPU Clusters

§ Gang Schedule

§ Heterogeneous GPUs as a resource
§ (e.g., Computing Pool with GPUs: P100, V100, A100 and etc)

7

Challenges: Heterogeneous GPU Training

Inefficiency in utilizing heterogeneous GPUs

- different GPU types: different computing/memory/network capacity

- imbalance in computing time -> low utilization

- gap between model development and the hardware environment

8

Gaps and Opportunities

- Lack of unified abstraction to support all of the parallel

strategies and the hybrids

- Fully automatic parallel strategy has high cost for giant models

- Inefficiency in utilizing heterogeneous GPUs

- Require significant model code refactoring

9

Gaps and Opportunities
- Lack unified abstraction to support all of the parallel strategies

and the hybrids

ü Unified abstraction for strategy expression

- Fully automatic parallel strategy has high cost for giant models

ü Incorporate user hints

- Inefficiency in utilizing heterogeneous GPUs

ü Parallel strategies should be used adaptively and dynamically

- Require significant model code refactoring

ü Minimize code change, switch among strategies easily

10

- Two new high-level primitives for unified expression

- Transform distributed models efficiently and automatically

- Hardware-aware load balancing algorithm

- Train the largest multi-modality model M6 with ten trillion model

with only 4-lines of code change

Whale: Efficient Giant Model Training over
Heterogeneous GPUs

11

Outline
• Introduction

• Whale: design abstraction

• Whale: parallel planner

• Whale: hardware-aware load balance

• Evaluation

• Conclusion

12

Abstraction: Internal Key Concepts

TaskGraph VirtualDevice

13

Parallel Primitives

Parallel primitive is a Python context manager.
Operations defined under form one TaskGraph (TG)

replicate(device_count) annotates a TG to be replicated.

- device_count: #devices for TG replicas

split(device_count) annotates a TG to apply intra-tensor sharding.

- device_count: #devices for sharded partitions

14

Parallel Examples

Pipeline with 2 TaskGraphs Hybrid of replicate and split

15

Parallel Planner

16

Hardware-aware Load Balancer

Balance the computing load proportional to the
device computing capacity, s.t. memory
constraints.

Data parallelism: balance the FLOP by adjusting
local batch while keeps the mini-batch unchanged.

Tensor Model Parallelism: balance the FLOP of
partitioned operations through uneven sharding.

17

Memory-Constraint Load Balancing

18

Load Balancer Example

- Earlier TaskGraph has higher peak memory than

later TaskGraph (e.g. BertLarge)

- Place earlier TaskGraphs on devices with higher

memory capacity.

- Partition the model operations to TaskGraphs in a

topological sort, balance the TaskGraphs

computing FLOP proportional to device capacity.

7

12

17

22

TG0 TG1 TG2 TG3

peak memory (GB)

Peak memory for TaskGraphs
(BertLarge, micro-bs=6)

19

Outline
• Introduction

• Whale: design abstraction

• Whale: parallel planner

• Whale: hardware-aware load balance

• Evaluation

• Conclusion

20

Micro-benchmark: Single Parallel Strategy

(b) Whale DP vs TF DP
on BertLarge

(a) Whale DP vs TF DP
on ResNet

(c) Whale Pipeline vs Gpipe
on BertLarge

(a, b) Whale DP obtained better performance than TF Estimator DP on ResNet and BertLarge

(c) Whale pipeline on BertLarge outperforms Gpipe

* 4-stages 1.45X , and 8 stages 1.14X
21

Micro-benchmark: Hybrid Strategy

(c) ResNet50 #class=1M
Hybrid strategy

(b) ResNet50 #class=100K
DP vs Hybrid

(a) BertLarge
Hybrid strategy

(a) Hybrid pipe+DP (TG=2 and TG=4) got better performance than pure pipe (TG=8) on 8 GPUs

(b) #class=100K, Hybrid split+DP got better performance than pure DP, 1.13~2.43X

(c) #class=1M, DP fails due to OOM. Hybrid achieved 95% scaling from 8~32GPUs
22

Micro-benchmark: Hardware-aware

(a) Hardware-Aware DP (b) Hardware-Aware Pipeline

Setup: 8 32GB V100 GPUs and 8 16GB P100 GPUs

(a) Hardware-aware DP got 1.3X to 1.4X

(b) Hardware-aware Pipeline got 1.2X
23

Industry-Scale Giant Model Training

(a) M6-10B with Pipeline and DP (b) M6-10B throughput

(c) M6-MoE-10T

- M6-10B: 91% throughput

scalability from 8 to 256

GPUs

- M6-MoE-10T: A few lines to

switch from pipeline to

tensor model parallelism

(MoE). Train on 512 NVIDIA

V100 GPUs.

24

Conclusion

Whale: Efficient Giant Model Training over Heterogeneous GPUs

• Efficiency, programmability, and adaptability

• Supports various parallel strategies using a unified abstraction

• Adapts to heterogeneous GPUs with automatic graph optimizations

• Deployed DL infrastructure at Alibaba for real giant model training

[Code] https://github.com/alibaba/EasyParallelLibrary

25

https://github.com/alibaba/EasyParallelLibrary

Thanks

Q&A

