USENIX ATC '22

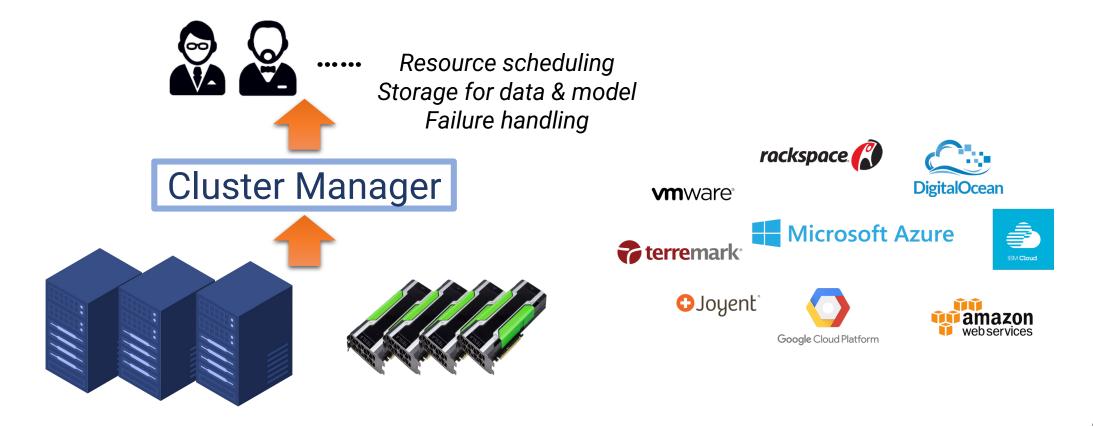
Sibylla: To Retry or Not To Retry on Deep Learning Job Failure

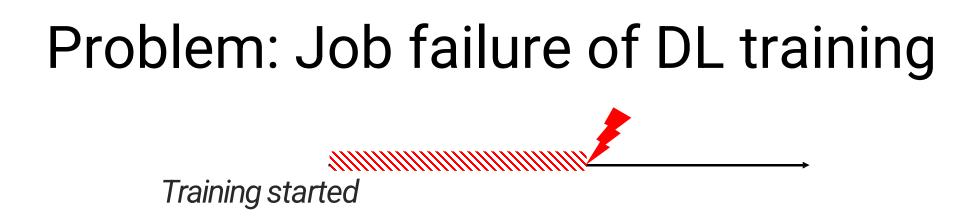
Taeyoon Kim, Suyeon Jeong, Jongseop Lee Soobee Lee, Myeongjae Jeon

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

Shared multi-tenant GPU clusters today

Shared GPU cluster is commonly used to run DL workloads





Unsuccessful job completion with job failures (resource waste) Prior studies: failure root cause and impact analysis [1, 2]

How to deal with various failures to enhance the cluster resource utilization?

[1] Jeon et al. "Analysis of Large-Scale Multi-Tenant GPU Clusters for DNNTraining Workloads." in ATC 2019
 [2] Zhang et al. "An Empirical Study on Program Failures of Deep Learning Jobs." in ICSE 2020

Two types of job failures

Deterministic failure (DT failure)

• Failure will repeat with retry on failure

Ex) Syntax errors, API misuse, corrupted data

Non-deterministic failure (NDT failure)

• Failure is transient and can be overcome with retry on failure Ex) Network failures, MPI daemon errors

Existing approaches for failure handing

Training started

Fixed number of retries on failed jobs

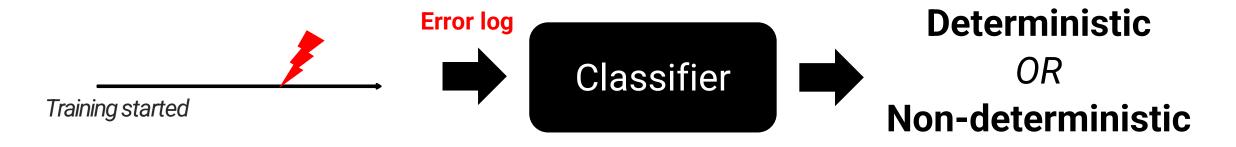
- (+) Increase job success rate (retrying NDT failures)
- (-) Waste resources (retrying DT failures)

Termination of failed jobs

- (+) Avoid worthless retry on DT failures
- (-) Lower job success rate (not retrying NDT failures)

Sibylla: Predicting DT vs. NDT failure

Goal No retry on DT failure and retry on NDT failure



Failure classifier in Sibylla

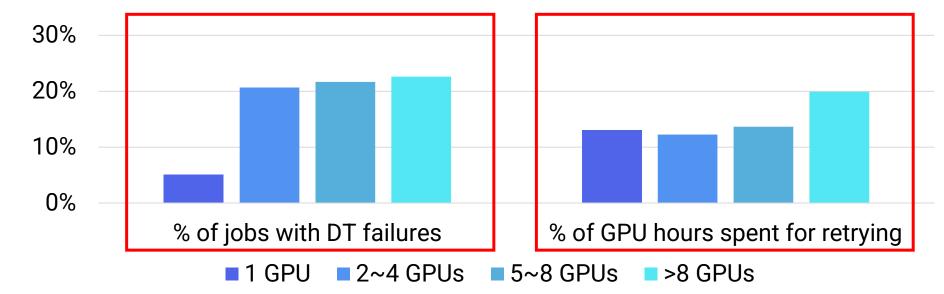
- 1. Highly accurate with various training error logs
- 2. Continuously updating without human intervention

Opportunity on predictive retry

Analysis using Microsoft Philly trace [1]

Resource inefficiency caused by DT failures

- 5–23% of jobs experience DT failures across job sizes
- 12–20% of GPU hours are wasted for retrying DT failures



Opportunity on predictive retry

Analysis using Microsoft Philly trace [1]

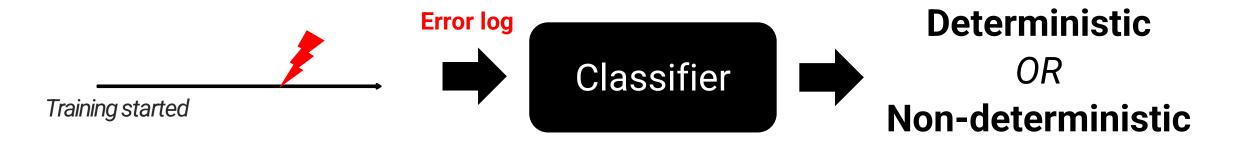
Resource inefficiency caused by DT failures

- 5–23% of jobs experience DT failures across job sizes
- 12–20% of GPU hours are wasted for retrying DT failures

^{20%} Classifying failures by Sibylla can save 10% Significant GPU hours wasted by frequent DT failures! % of jobs with DT failures % of GPU hours spent for retrying 1 GPU = 2~4 GPUs = 5~8 GPUs >8 GPUs

Sibylla: Predicting DT vs. NDT failure

Goal No retry on DT failure and retry on NDT failure



Failure classifier in Sibylla

- 1. Highly accurate with various training error logs
 - RNN model-based classifier for determining DT/NDT
- 2. Continuously updating without human intervention

Data source: stderr/stdout streams

Challenge Unstructured and diverse log formats

in forward(self, x, hidden)
---> 17 x, hidden= self.lstm(x,hidden)

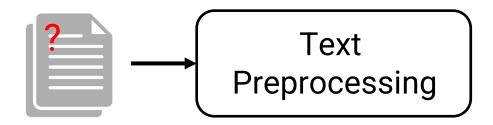
```
Failed job log
```

torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
--> 727 result = self.forward(*input, **kwargs)

```
torch\nn\modules\rnn.py in forward(self, input, hx)
--> 234 result = _impl(input, hx, ...)
```

TypeError: rnn_tanh() received an invalid combination of arguments - got (Tensor, Tensor, list, ...), but expected one of: * (Tensor, Tensor, Tensor, ...) didn't match because some of the arguments have invalid types: (Tensor, Tensor, !list!, ...)

Sibylla: Text preprocessing

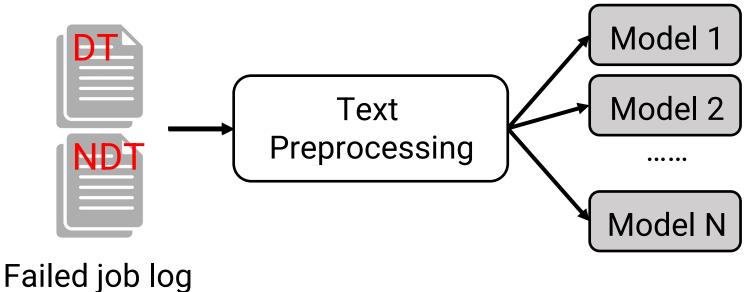


Failed job log

Loading input is finished Loading output is finished Model loading success

Loading * is finished Model loading success [0.3, 0.2,, 0.6] [0.6, 0.3,, 0.1]

Sibylla: Training phase

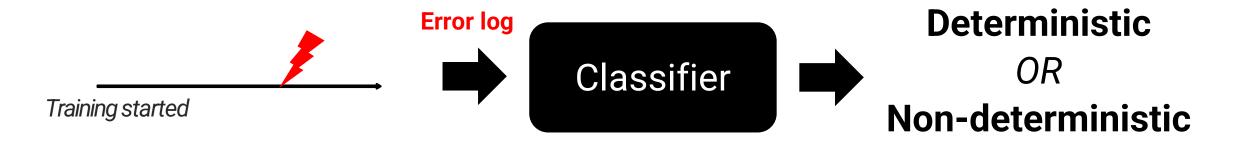


(Labeled)

Log data correctly labeled by domain experts RNN models (e.g., LSTM, GRU) to build the classifier

Sibylla: Predicting DT vs. NDT failure

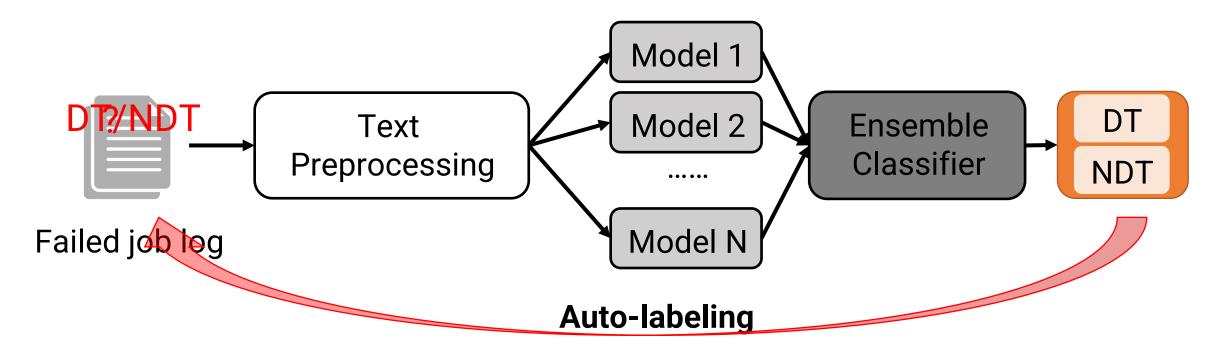
Goal No retry on DT failure and retry on NDT failure



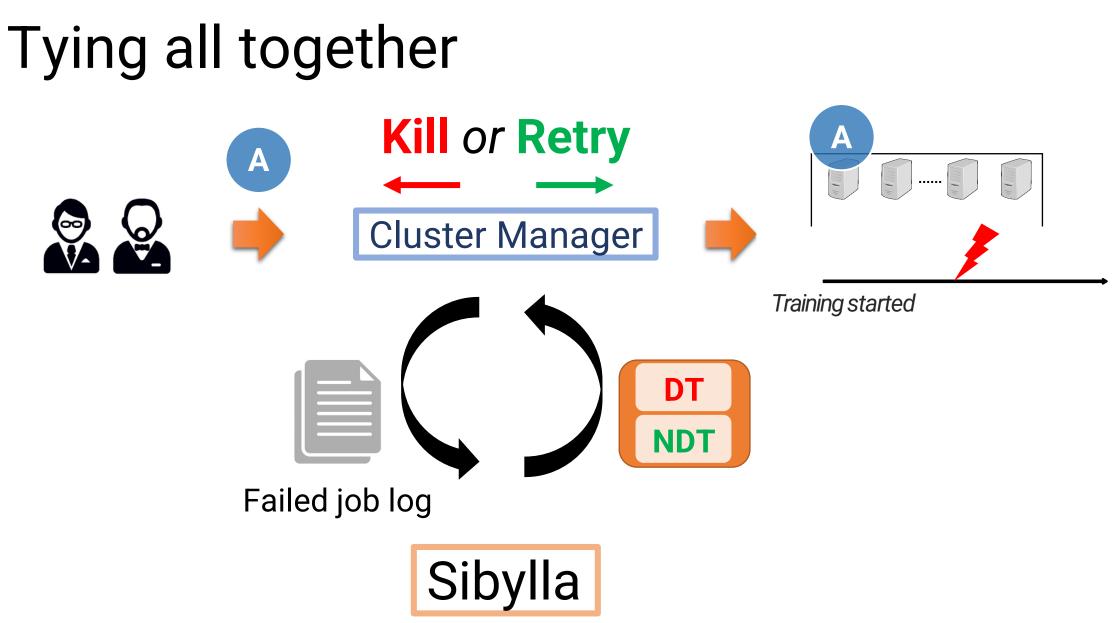
Failure classifier in Sibylla:

- 1. Highly accurate with various training error logs
- 2. Continuously updating without human intervention
 - Auto-labeling mechanism with classifier's decision

Sibylla: Auto-labeling phase



Online logs auto-labeled for incremental model update Auto-labeling based on an ensemble method



Data collection

- 97 logs from a datacenter operator & 159 logs from Stack Overflow
- Augmented from 256 (97+159) to 4468 failure logs
- Training strategy
 - 20% for initial training, then each 10% auto-labeled for updating classifier

Comparison to Clustering, LSTM, GRU, and Oracle

Can Sibylla classify failure type well?

Sibylla outperforms other methods in classifying NDT failures

Precision

Recall

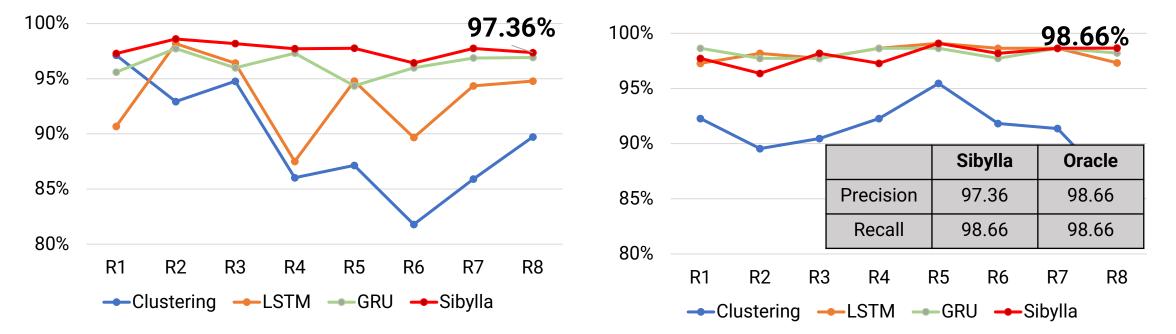


Can Sibylla classify failure type well?

Sibylla outperforms other methods in classifying NDT failures

Precision

Recall



Trace-driven simulation

- Job scheduling trace from Microsoft Philly
- Job execution simulator from Tiresias [1]

Three job scheduling policies

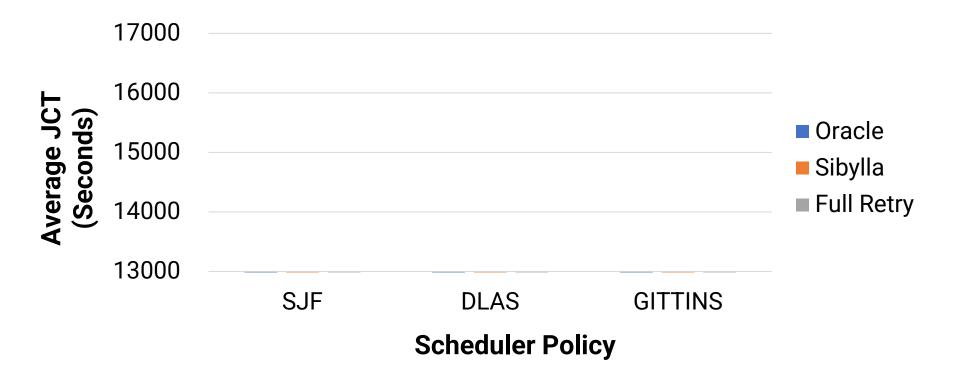
• Smallest Job First (SJF), 2D-LAS (DLAS), 2D-Gittins index (GITTINS)

Cluster specification

• 200 nodes, each 8 GPUs, 256GB of host memory, and 64 CPU cores

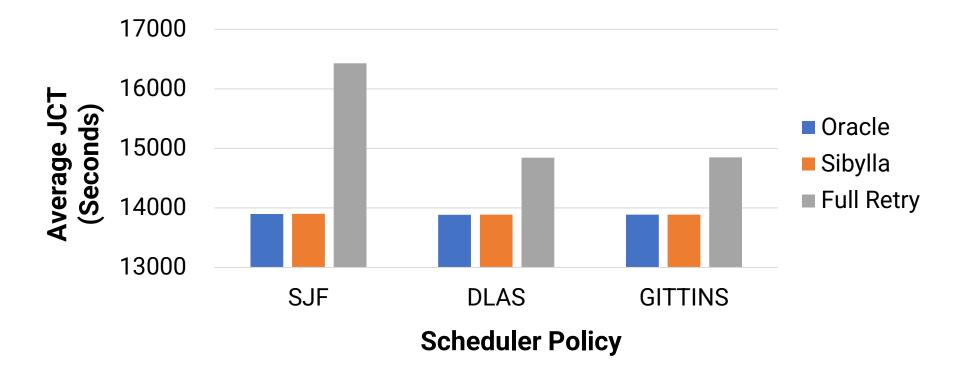
Comparison to

- Oracle: 100% correct predictions
- Full Retry: Retrying jobs w/o prediction (same as *Philly*)



Job completion time with Sibylla

- Improves 15.4% for SJF, 6.5% for DLAS and GITTINS than Full Retry
- Worsens only 1.0% compared with 100% correct prediction



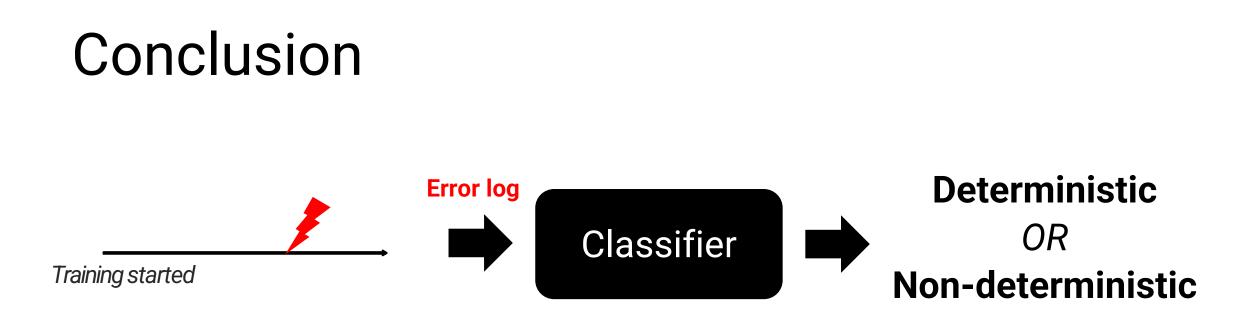
Can Sibylla maintain job success rate?

Success rate on predictive retry

• Misprediction on failed job leads to lower job success rate

Compared to Full Retry

- Full Retry has highest job success rate
- *Sibylla* is lower the job success rate by only **0.06%** from **75.04%**



Job failure classifier

• Sibylla, predicting DT and NDT to help cluster kill DT and retry NDT

Performance of Sibylla

- Sibylla achieves consistently high performance on classifying failures
- Predictive retry with *Sibylla* can improve cluster efficiency