
Privbox: Faster System Calls Through 
Sandboxed Privileged Execution

Dmitry Kuznetsov,   Adam Morrison
Tel Aviv University

The Blavatnik School 
of Computer Science
Tel Aviv University



System Calls

● Main interface for requesting operating system services

● Semantically similar to simple function call (i.e. prepare parameters, invoke, receive result)

● Unlike function call, involves many more steps and is much slower!

○ E.g. hardware: privilege level change

● Spectre/Meltdown mitigations (e.g. PTI) make things even worse



● Particularly bad for system call heavy workloads
○ Recall: almost all I/O operations eventually translate to a system call

○ System call heavy = I/O heavy

● Back-of-the-envelope: Redis
○ 200k requests / second (single threaded, w/o pipelining)

○ At least 2 system calls per request (recv + send)

○ ~900 cycles per system call

✗ Over 13% of a core running at 2.6GHz

System Call Overhead
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Existing Approaches

● Batching (preadv/…): perform less round-trips to kernel by doing several operations each entry:

✗ Possible only for specific operations

● Entry-less mechanisms (FlexSC, io_uring): request system calls through memory interface:

✗ Requires kernel-side polling

✗ Makes system calls asynchronous

● Kernel bypass (DPDK, SPDK): map whole device into process memory:

✗ No high-level abstractions from kernel (files, sockets)

✗ Not possible to share the devices between processes

➢  All of the above require software re-architecture!
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● New mechanism for system call intensive workloads that allows system calls with less 
overhead 

● Privbox achieves this by allowing user programs to load and execute system call 
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Privbox

● New mechanism for system call intensive workloads that allows system calls with less 
overhead 

● Privbox achieves this by allowing user programs to load and execute system call 
heavy code under a new semi-privileged (almost kernel-like) but sandboxed 
execution mode.

Advantages:

✓ 2.2x less system call overhead
✓ System call retain familiar and synchronous semantics
✓ Does not require software re-architecture or major source code changes

➢ Example: Memcached:
✓ Ported to use Privbox in under one hour and 70 LOC

High level diagram
/ logo-like



Privbox Mechanism 

Kernel

User process

do_IO:
  loop:
    read()

sys_read syscall entry

main:
  do_IO()

Function call (fast)
System call (slow)

   Regular execution   



*code inside Privbox is running in privileged CPU mode, but 
instrumented and sandboxed for security

Privbox Mechanism 

Kernel

User process

do_IO:
  loop:
    read()

sys_read syscall entry

main:
  do_IO()

Kernel

User process

sys_read

System call 
gate function

main:
  do_IO()*

Semi-privileged 
execution*

do_IO:
  loop:
    read()

   Regular execution    vs    Execution with Privbox

Function call (fast)
System call (slow)



Semi-Privileged Execution Mode (SPEM)

● New execution mode for user processes 
○ Based on Kernel-mode Linux

● Used during Privboxed code invocation

Details:

● Runs under privileged CPU mode (e.g. ring 0)
● Allows system calls through system call gate function
● Identical to regular processes from all other perspectives

○ Same permission checks, scheduling, etc

Regular SPEM

Subject to 
permissions 
checks

✓ ✓

Preemptible ✓ ✓

Can block ✓ ✓

… ✓ ✓



System Call Gate Function

Kernel

User process

sys_read

System call gate 
function

main:
  do_IO()*

Privbox

do_IO:
  loop:
    read()

Function call (fast)

System call (slow)

● Function in kernel memory

● Similar to syscall instruction handler

✓ But with less steps

● Same semantics

● Reach kernel code through function calls

✓ No need to change privilege level
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Flow

Kernel

Code

Instrumented 
binary

Custom compiler adds instrumentation

Privbox 
Verifier       

+
 Loader

Semi privileged execution 
mode

Privbox 
code 
region

Custom 
page 
table

3

4

1. Developer marks code intended for Privbox

2. Developer compiles code with a custom 
compiler that introduces instrumentation

3. Program loads instrumented code into a 
Privbox environment

4. Program can invoke loaded code through a 
special system call that transfers control to 
invoked code under Semi-Privileged 
Execution mode

2

Annotated 
code

Developer marks system call intensive 
code paths1

➢ Instrumentation adds overhead

➢ Therefore, annotating the whole 
program can be suboptimal
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Porting Programs to Privbox

1. Developer marks system call intensive 
code

2. Program loads code into a Privbox
do_IO(...) {
  for (...) { ...}
  return result;
}

main(...) {
  …
  do_IO(...);
  …
}

Standard application

#include <sys/privbox.h>

PRIVBOX_MARKER // 1.
do_IO(...) {
  for (...) { ...}
  return result;
}

main(...) {
  privbox_load(do_IO); // 2.
  do_IO(...);
  …
}

Application with Privbox



Porting Programs to Privbox

1. Developer marks system call intensive 
code

2. Program loads code into a Privbox
3. Program invokes code inside Privbox

do_IO(...) {
  for (...) { ...}
  return result;
}

main(...) {
  …
  do_IO(...);
  …
}

Standard application

#include <sys/privbox.h>

PRIVBOX_MARKER // 1.
do_IO(...) {
  for (...) { ...}
  return result;
}

main(...) {
  privbox_load(do_IO); // 2.
  privbox_invoke(do_IO);// 3.
  …
}

Application with Privbox



Instrumentation

Porting Programs to Privbox

1. Developer marks system call intensive 
code

2. Program loads code into a Privbox
3. Program invokes code inside Privbox

✓ Minimal code changes
✓ Well suited for I/O threaded workloads

do_IO(...) {
  for (...) { ...}
  return result;
}

main(...) {
  …
  do_IO(...);
  …
}

Standard application

#include <sys/privbox.h>

PRIVBOX_MARKER // 1.
do_IO(...) {
  for (...) { ...}
  return result;
}

main(...) {
  privbox_load(do_IO); // 2.
  privbox_invoke(do_IO);// 3.
  …
}

Application with Privbox

IO threadsCompute 
threads

System calls

Privboxed 
code

Comm. over 
memory
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Problem:

● Privbox executes code with kernel-like privileges (e.g. ring 0)
● Malicious user code can gain complete control of the machine

High-level safety objective: no new access through Privbox

Sandbox imposes following properties on loaded code:

1.  No privileged instructions
2.  No kernel memory accesses
3.  No branching to unverified code

Safety Requirements



Compilation and Verification

● Safety of Privbox relies on verification of loaded code
● Inspired by Native Client work
● Privbox Compiler:

○ Transforms potentially unsafe instructions into equivalent but verifiably 
safe instruction sequences

Privbox 
Compiler

Safety 
properties



Compilation and Verification

● Safety of Privbox relies on verification of loaded code
● Inspired by Native Client work
● Privbox Compiler:

○ Transforms potentially unsafe instructions into equivalent but verifiably 
safe instruction sequences

● Privbox Verifier:
○ Triggered each time code is loaded into 

Privbox
○ Disassemble loaded code
○ Reject if code violates safety requirements Privbox 

Compiler
Privbox 
Verifier

Safety 
properties
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● Challenge:
○ Variable length instructions hamper the ability 
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Verification

● Challenge:
○ Variable length instructions hamper the ability 

to disassemble code
● Code chunk:

○ A fixed in size and aligned in memory group of 
instructions

● Solution:  
○ Pack code into code chunks
○ Restrict branching to chunk-aligned addresses

Chunk (32 bytes)

Instr1 (9 bytes)

Instr2 (11 bytes)

Instr3 (7 bytes)

NoOp (5 bytes)

Chunk (32 bytes)

Instr4 (9 bytes)

Instr5 (2 bytes)

…

mov..

add..

mov..

movcr3



Privileged Instructions

● Trivial:
○ Check during disassembly
○ Reject if present No priv. instructions ✓

No kernel access N/A

No branching 
outside sandbox

N/A
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Load/Store Instructions

● Load/store instructions have memory operands
● Effective address of memory operand may be known only at run time
● Safety requirement:

○ No kernel memory access
● Sanitation:

○ Mask most significant bit of memory operand
○ addr => addr & ~(1<<63)

○ … no longer a kernel address

No priv. instructions N/A

No kernel access ✓

No branching 
outside sandbox

N/A

64-bit address space

47-bit address space

User addresses:
0x00000000… 0x00007fff…

Kernel addresses:
0xffff8000… 0xffffffff…

Non-canonical
addresses

47-bit address space



Branching Instructions

● Indirect branches (and returns) branch to addresses stored in registers or memory
● Effective address might be known only at run time



Branching Instructions

No priv. instructions N/A

No kernel access ✓

No branching 
outside sandbox

✓
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○ Branch only to chunk beginnings
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Branching Instructions

● Indirect branches (and returns) branch to addresses stored in registers or memory
● Effective address might be known only at run time
● Safety requirement:

○ No kernel memory access
○ Branch only to chunk beginnings

● Sanitation:
○ Mask MSB and clear lowest bits
○ addr => addr & ~(1<<63) & ~31

○ ... non-kernel address and chunk-aligned.
✗ Can still branch to aligned user address!

64-bit address space

47-bit address space

User addresses:
0x00000000… 0x00007fff…

Kernel addresses:
0xffff8000… 0xffffffff…

Non-canonical
addresses

47-bit address space

No priv. instructions N/A

No kernel access ✓

No branching 
outside sandbox

✓



Memory Layout

1. Privboxed code region inside user memory

○ Immutable by user-space

User memory
(non-executable)

Kernel memory

Non-canonical
addresses

Privboxed 
code

Syscall gate 
function

Protected by instrumentation
Non-accessible
Non-executable
Accessible



Memory Layout

1. Privboxed code region inside user memory

○ Immutable by user-space

2. User memory mirroring regular memory layout

✓ Non-executable: completes branching instrumentation

■ Recall: instrumented branches can only target 

non-kernel, 32-byte aligned addresses

Protected by instrumentation
Non-accessible
Non-executable
Accessible

Kernel memory

Non-canonical
addresses

Syscall gate 
function

User memory
(non-executable)
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Non-canonical
addresses

Memory Layout

1. Privboxed code region inside user memory

○ Immutable by user-space

2. User memory mirroring regular memory layout

✓ Non-executable: completes branching instrumentation

■ Recall: instrumented branches can only target 

non-kernel, 32-byte aligned addresses

3. Kernel memory is mapped and accessible

○ Enables direct branching to syscall gate function!

○ Undesired kernel accesses blocked by instrumentation User memory
(non-executable)

Kernel memory

Privboxed 
code

Syscall gate 
function

Protected by instrumentation
Non-accessible
Non-executable
Accessible



Semi-Privileged Access Prevention (SPAP)

● Observation: Majority of overhead comes from load/store instrumentation
● Solution: we propose a new, SMAP/SMEP-like, hardware extension

○ Mechanism:
■ Generate faults on supervisor page (kernel memory) access
■ …when executing from non-supervisor pages under privileged mode (SPEM)

○ Minimal expected overhead (very similar to SMAP/SMEP)
○ Details in paper



Semi-Privileged Access Prevention (SPAP)

● Observation: Majority of overhead comes from load/store instrumentation
● Solution: we propose a new, SMAP/SMEP-like, hardware extension

○ Mechanism:
■ Generate faults on supervisor page (kernel memory) access
■ …when executing from non-supervisor pages under privileged mode (SPEM)

○ Minimal expected overhead (very similar to SMAP/SMEP)
○ Details in paper

● Outcome:
✓ Load/store instrumentation no longer required
✓ Branching instrumentation need only to take 

care of alignment



Evaluation: Entry Overheads

Benchmark: measurement of system call entry/exit overhead (on x86)

Results: 

✓ Privbox is 2.2x faster than regular system call on system with PTI

Cycles to execute a non-existing system call (average over 100M invocations).



Evaluation: I/O Threaded Workloads

Benchmark: server with I/O isolated to 
dedicated threads

Results: 

✓ Up to 72% speedup for 
scenarios where I/O is the 
bottleneck (on kernels with PTI)

IO threadsCompute 
threads

System calls

privboxed code

Comm. over 
memory



redis
● Benchmark: redis-bench / memtier_benchmark
● Results:

✓ Up to 7.6% speedup on hardware that requires PTI
✓ Up to 11% speedup if hardware supported SPAP

memcached
● Benchmark: memtier_benchmark
● Results:

✓ Up to 5.5% speedup on hardware that requires PTI
✓ Up to 8.4% speedup if hardware supported SPAP

Note: Lower bounds, whole processes instrumented

Evaluation: Real-world Workloads



✓ Privbox: faster system calls with familiar semantics

✓ No need to re-architect software

✓ 2.2x times faster system call entry/exit

✓ Up to 72% speedup for IO-threaded workloads

✓ Lower bound of 7% speedup for workloads like 

Redis/Memcached

✓ Github: https://github.com/privbox

Conclusion

Kernel

User process

sys_read

System call 
gate function

main:
  do_IO()*

Privbox

do_IO:
  loop:
    read()

https://github.com/privbox




Privbox vs eBPF

eBPF:

● Safety guarantees:
○ Memory safety
○ Termination

● Scope:
○ Callback functions, small programs

● Execution model:
○ Invoked by kernel on events
○ Can invoke only specific helpers

Privbox:

● Safety guarantees:
○ Memory accesses

● Scope:
○ Full programs

● Execution model:
○ Runs like regular process
○ Uses system call as needed

Kernel

Privbox

eBPP

Kernel


