
Privbox: Faster System Calls Through
Sandboxed Privileged Execution

Dmitry Kuznetsov, Adam Morrison
Tel Aviv University

The Blavatnik School
of Computer Science
Tel Aviv University

System Calls

● Main interface for requesting operating system services

● Semantically similar to simple function call (i.e. prepare parameters, invoke, receive result)

● Unlike function call, involves many more steps and is much slower!

○ E.g. hardware: privilege level change

● Spectre/Meltdown mitigations (e.g. PTI) make things even worse

● Particularly bad for system call heavy workloads
○ Recall: almost all I/O operations eventually translate to a system call

○ System call heavy = I/O heavy

● Back-of-the-envelope: Redis
○ 200k requests / second (single threaded, w/o pipelining)

○ At least 2 system calls per request (recv + send)

○ ~900 cycles per system call

✗ Over 13% of a core running at 2.6GHz

System Call Overhead

Existing Approaches

● Batching (preadv/…): perform less round-trips to kernel by doing several operations each entry:

✗ Possible only for specific operations

Existing Approaches

● Batching (preadv/…): perform less round-trips to kernel by doing several operations each entry:

✗ Possible only for specific operations

● Entry-less mechanisms (FlexSC, io_uring): request system calls through memory interface:

✗ Requires kernel-side polling

✗ Makes system calls asynchronous

Existing Approaches

● Batching (preadv/…): perform less round-trips to kernel by doing several operations each entry:

✗ Possible only for specific operations

● Entry-less mechanisms (FlexSC, io_uring): request system calls through memory interface:

✗ Requires kernel-side polling

✗ Makes system calls asynchronous

● Kernel bypass (DPDK, SPDK): map whole device into process memory:

✗ No high-level abstractions from kernel (files, sockets)

✗ Not possible to share the devices between processes

Existing Approaches

● Batching (preadv/…): perform less round-trips to kernel by doing several operations each entry:

✗ Possible only for specific operations

● Entry-less mechanisms (FlexSC, io_uring): request system calls through memory interface:

✗ Requires kernel-side polling

✗ Makes system calls asynchronous

● Kernel bypass (DPDK, SPDK): map whole device into process memory:

✗ No high-level abstractions from kernel (files, sockets)

✗ Not possible to share the devices between processes

➢ All of the above require software re-architecture!

Privbox

● New mechanism for system call intensive workloads that allows system calls with less
overhead

● Privbox achieves this by allowing user programs to load and execute system call
heavy code under a new semi-privileged (almost kernel-like) but sandboxed
execution mode

High level diagram
/ logo-like

Privbox

● New mechanism for system call intensive workloads that allows system calls with less
overhead

● Privbox achieves this by allowing user programs to load and execute system call
heavy code under a new semi-privileged (almost kernel-like) but sandboxed
execution mode.

Advantages:

✓ 2.2x less system call overhead
✓ System call retain familiar and synchronous semantics
✓ Does not require software re-architecture or major source code changes

➢ Example: Memcached:
✓ Ported to use Privbox in under one hour and 70 LOC

High level diagram
/ logo-like

Privbox Mechanism

Kernel

User process

do_IO:
 loop:
 read()

sys_read syscall entry

main:
 do_IO()

Function call (fast)
System call (slow)

 Regular execution

*code inside Privbox is running in privileged CPU mode, but
instrumented and sandboxed for security

Privbox Mechanism

Kernel

User process

do_IO:
 loop:
 read()

sys_read syscall entry

main:
 do_IO()

Kernel

User process

sys_read

System call
gate function

main:
 do_IO()*

Semi-privileged
execution*

do_IO:
 loop:
 read()

 Regular execution vs Execution with Privbox

Function call (fast)
System call (slow)

Semi-Privileged Execution Mode (SPEM)

● New execution mode for user processes
○ Based on Kernel-mode Linux

● Used during Privboxed code invocation

Details:

● Runs under privileged CPU mode (e.g. ring 0)
● Allows system calls through system call gate function
● Identical to regular processes from all other perspectives

○ Same permission checks, scheduling, etc

Regular SPEM

Subject to
permissions
checks

✓ ✓

Preemptible ✓ ✓

Can block ✓ ✓

… ✓ ✓

System Call Gate Function

Kernel

User process

sys_read

System call gate
function

main:
 do_IO()*

Privbox

do_IO:
 loop:
 read()

Function call (fast)

System call (slow)

● Function in kernel memory

● Similar to syscall instruction handler

✓ But with less steps

● Same semantics

● Reach kernel code through function calls

✓ No need to change privilege level

Flow Code

Annotated
code

Developer marks system call intensive
code paths1

1. Developer marks code intended for Privbox

Flow Code

Instrumented
binary

Custom compiler adds instrumentation2

Annotated
code

Developer marks system call intensive
code paths1

1. Developer marks code intended for Privbox

2. Developer compiles code with a custom
compiler that introduces instrumentation

➢ Instrumentation adds overhead

➢ Therefore, annotating the whole
program can be suboptimal

Flow

Kernel

Code

Instrumented
binary

Custom compiler adds instrumentation

Privbox
Verifier

+
 Loader

3

2

Annotated
code

Developer marks system call intensive
code paths1

1. Developer marks code intended for Privbox

2. Developer compiles code with a custom
compiler that introduces instrumentation

3. Program loads instrumented code into a
Privbox environment

➢ Instrumentation adds overhead

➢ Therefore, annotating the whole
program can be suboptimal

Flow

Kernel

Code

Instrumented
binary

Custom compiler adds instrumentation

Privbox
Verifier

+
 Loader

Semi privileged execution
mode

Privbox
code
region

Custom
page
table

3

4

1. Developer marks code intended for Privbox

2. Developer compiles code with a custom
compiler that introduces instrumentation

3. Program loads instrumented code into a
Privbox environment

4. Program can invoke loaded code through a
special system call that transfers control to
invoked code under Semi-Privileged
Execution mode

2

Annotated
code

Developer marks system call intensive
code paths1

➢ Instrumentation adds overhead

➢ Therefore, annotating the whole
program can be suboptimal

Porting Programs to Privbox

do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 …
 do_IO(...);
 …
}

Standard application

do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 …
 do_IO(...);
 …
}

Application with Privbox

Porting Programs to Privbox

do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 …
 do_IO(...);
 …
}

Standard application

#include <sys/privbox.h>

PRIVBOX_MARKER // 1.
do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 …
 do_IO(...);
 …
}

Application with Privbox

1. Developer marks system call intensive
code

Porting Programs to Privbox

1. Developer marks system call intensive
code

2. Program loads code into a Privbox
do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 …
 do_IO(...);
 …
}

Standard application

#include <sys/privbox.h>

PRIVBOX_MARKER // 1.
do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 privbox_load(do_IO); // 2.
 do_IO(...);
 …
}

Application with Privbox

Porting Programs to Privbox

1. Developer marks system call intensive
code

2. Program loads code into a Privbox
3. Program invokes code inside Privbox

do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 …
 do_IO(...);
 …
}

Standard application

#include <sys/privbox.h>

PRIVBOX_MARKER // 1.
do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 privbox_load(do_IO); // 2.
 privbox_invoke(do_IO);// 3.
 …
}

Application with Privbox

Instrumentation

Porting Programs to Privbox

1. Developer marks system call intensive
code

2. Program loads code into a Privbox
3. Program invokes code inside Privbox

✓ Minimal code changes
✓ Well suited for I/O threaded workloads

do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 …
 do_IO(...);
 …
}

Standard application

#include <sys/privbox.h>

PRIVBOX_MARKER // 1.
do_IO(...) {
 for (...) { ...}
 return result;
}

main(...) {
 privbox_load(do_IO); // 2.
 privbox_invoke(do_IO);// 3.
 …
}

Application with Privbox

IO threadsCompute
threads

System calls

Privboxed
code

Comm. over
memory

Problem:

● Privbox executes code with kernel-like privileges (e.g. ring 0)
● Malicious user code can gain complete control of the machine

Safety Requirements

Problem:

● Privbox executes code with kernel-like privileges (e.g. ring 0)
● Malicious user code can gain complete control of the machine

High-level safety objective: no new access through Privbox

Safety Requirements

Problem:

● Privbox executes code with kernel-like privileges (e.g. ring 0)
● Malicious user code can gain complete control of the machine

High-level safety objective: no new access through Privbox

Sandbox imposes following properties on loaded code:

1. No privileged instructions
2. No kernel memory accesses
3. No branching to unverified code

Safety Requirements

Compilation and Verification

● Safety of Privbox relies on verification of loaded code
● Inspired by Native Client work
● Privbox Compiler:

○ Transforms potentially unsafe instructions into equivalent but verifiably
safe instruction sequences

Privbox
Compiler

Safety
properties

Compilation and Verification

● Safety of Privbox relies on verification of loaded code
● Inspired by Native Client work
● Privbox Compiler:

○ Transforms potentially unsafe instructions into equivalent but verifiably
safe instruction sequences

● Privbox Verifier:
○ Triggered each time code is loaded into

Privbox
○ Disassemble loaded code
○ Reject if code violates safety requirements Privbox

Compiler
Privbox
Verifier

Safety
properties

Verification

● Challenge:
○ Variable length instructions hamper the ability

to disassemble code

mov..

add..

mov..

movcr3

Verification

● Challenge:
○ Variable length instructions hamper the ability

to disassemble code
● Code chunk:

○ A fixed in size and aligned in memory group of
instructions

Chunk (32 bytes)

Instr1 (9 bytes)

Instr2 (11 bytes)

Instr3 (7 bytes)

NoOp (5 bytes)

Chunk (32 bytes)

Instr4 (9 bytes)

Instr5 (2 bytes)

…

mov..

add..

mov..

movcr3

Verification

● Challenge:
○ Variable length instructions hamper the ability

to disassemble code
● Code chunk:

○ A fixed in size and aligned in memory group of
instructions

● Solution:
○ Pack code into code chunks
○ Restrict branching to chunk-aligned addresses

Chunk (32 bytes)

Instr1 (9 bytes)

Instr2 (11 bytes)

Instr3 (7 bytes)

NoOp (5 bytes)

Chunk (32 bytes)

Instr4 (9 bytes)

Instr5 (2 bytes)

…

mov..

add..

mov..

movcr3

Privileged Instructions

● Trivial:
○ Check during disassembly
○ Reject if present No priv. instructions ✓

No kernel access N/A

No branching
outside sandbox

N/A

Load/Store Instructions

● Load/store instructions have memory operands
● Effective address of memory operand may be known only at run time

Load/Store Instructions

● Load/store instructions have memory operands
● Effective address of memory operand may be known only at run time
● Safety requirement:

○ No kernel memory access No priv. instructions N/A

No kernel access ✓

No branching
outside sandbox

N/A

Load/Store Instructions

● Load/store instructions have memory operands
● Effective address of memory operand may be known only at run time
● Safety requirement:

○ No kernel memory access
● Sanitation:

○ Mask most significant bit of memory operand
○ addr => addr & ~(1<<63)

○ … no longer a kernel address

No priv. instructions N/A

No kernel access ✓

No branching
outside sandbox

N/A

64-bit address space

47-bit address space

User addresses:
0x00000000… 0x00007fff…

Kernel addresses:
0xffff8000… 0xffffffff…

Non-canonical
addresses

47-bit address space

Branching Instructions

● Indirect branches (and returns) branch to addresses stored in registers or memory
● Effective address might be known only at run time

Branching Instructions

No priv. instructions N/A

No kernel access ✓

No branching
outside sandbox

✓

● Indirect branches (and returns) branch to addresses stored in registers or memory
● Effective address might be known only at run time
● Safety requirement:

○ No kernel memory access
○ Branch only to chunk beginnings

Branching Instructions

● Indirect branches (and returns) branch to addresses stored in registers or memory
● Effective address might be known only at run time
● Safety requirement:

○ No kernel memory access
○ Branch only to chunk beginnings

● Sanitation:
○ Mask MSB and clear lowest bits
○ addr => addr & ~(1<<63) & ~31

○ ... non-kernel address and chunk-aligned.

64-bit address space

47-bit address space

User addresses:
0x00000000… 0x00007fff…

Kernel addresses:
0xffff8000… 0xffffffff…

Non-canonical
addresses

47-bit address space

No priv. instructions N/A

No kernel access ✓

No branching
outside sandbox

✓

Branching Instructions

● Indirect branches (and returns) branch to addresses stored in registers or memory
● Effective address might be known only at run time
● Safety requirement:

○ No kernel memory access
○ Branch only to chunk beginnings

● Sanitation:
○ Mask MSB and clear lowest bits
○ addr => addr & ~(1<<63) & ~31

○ ... non-kernel address and chunk-aligned.
✗ Can still branch to aligned user address!

64-bit address space

47-bit address space

User addresses:
0x00000000… 0x00007fff…

Kernel addresses:
0xffff8000… 0xffffffff…

Non-canonical
addresses

47-bit address space

No priv. instructions N/A

No kernel access ✓

No branching
outside sandbox

✓

Memory Layout

1. Privboxed code region inside user memory

○ Immutable by user-space

User memory
(non-executable)

Kernel memory

Non-canonical
addresses

Privboxed
code

Syscall gate
function

Protected by instrumentation
Non-accessible
Non-executable
Accessible

Memory Layout

1. Privboxed code region inside user memory

○ Immutable by user-space

2. User memory mirroring regular memory layout

✓ Non-executable: completes branching instrumentation

■ Recall: instrumented branches can only target

non-kernel, 32-byte aligned addresses

Protected by instrumentation
Non-accessible
Non-executable
Accessible

Kernel memory

Non-canonical
addresses

Syscall gate
function

User memory
(non-executable)

Privboxed
code

Non-canonical
addresses

Memory Layout

1. Privboxed code region inside user memory

○ Immutable by user-space

2. User memory mirroring regular memory layout

✓ Non-executable: completes branching instrumentation

■ Recall: instrumented branches can only target

non-kernel, 32-byte aligned addresses

3. Kernel memory is mapped and accessible

○ Enables direct branching to syscall gate function!

○ Undesired kernel accesses blocked by instrumentation User memory
(non-executable)

Kernel memory

Privboxed
code

Syscall gate
function

Protected by instrumentation
Non-accessible
Non-executable
Accessible

Semi-Privileged Access Prevention (SPAP)

● Observation: Majority of overhead comes from load/store instrumentation
● Solution: we propose a new, SMAP/SMEP-like, hardware extension

○ Mechanism:
■ Generate faults on supervisor page (kernel memory) access
■ …when executing from non-supervisor pages under privileged mode (SPEM)

○ Minimal expected overhead (very similar to SMAP/SMEP)
○ Details in paper

Semi-Privileged Access Prevention (SPAP)

● Observation: Majority of overhead comes from load/store instrumentation
● Solution: we propose a new, SMAP/SMEP-like, hardware extension

○ Mechanism:
■ Generate faults on supervisor page (kernel memory) access
■ …when executing from non-supervisor pages under privileged mode (SPEM)

○ Minimal expected overhead (very similar to SMAP/SMEP)
○ Details in paper

● Outcome:
✓ Load/store instrumentation no longer required
✓ Branching instrumentation need only to take

care of alignment

Evaluation: Entry Overheads

Benchmark: measurement of system call entry/exit overhead (on x86)

Results:

✓ Privbox is 2.2x faster than regular system call on system with PTI

Cycles to execute a non-existing system call (average over 100M invocations).

Evaluation: I/O Threaded Workloads

Benchmark: server with I/O isolated to
dedicated threads

Results:

✓ Up to 72% speedup for
scenarios where I/O is the
bottleneck (on kernels with PTI)

IO threadsCompute
threads

System calls

privboxed code

Comm. over
memory

redis
● Benchmark: redis-bench / memtier_benchmark
● Results:

✓ Up to 7.6% speedup on hardware that requires PTI
✓ Up to 11% speedup if hardware supported SPAP

memcached
● Benchmark: memtier_benchmark
● Results:

✓ Up to 5.5% speedup on hardware that requires PTI
✓ Up to 8.4% speedup if hardware supported SPAP

Note: Lower bounds, whole processes instrumented

Evaluation: Real-world Workloads

✓ Privbox: faster system calls with familiar semantics

✓ No need to re-architect software

✓ 2.2x times faster system call entry/exit

✓ Up to 72% speedup for IO-threaded workloads

✓ Lower bound of 7% speedup for workloads like

Redis/Memcached

✓ Github: https://github.com/privbox

Conclusion

Kernel

User process

sys_read

System call
gate function

main:
 do_IO()*

Privbox

do_IO:
 loop:
 read()

https://github.com/privbox

Privbox vs eBPF

eBPF:

● Safety guarantees:
○ Memory safety
○ Termination

● Scope:
○ Callback functions, small programs

● Execution model:
○ Invoked by kernel on events
○ Can invoke only specific helpers

Privbox:

● Safety guarantees:
○ Memory accesses

● Scope:
○ Full programs

● Execution model:
○ Runs like regular process
○ Uses system call as needed

Kernel

Privbox

eBPP

Kernel

