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Transaction Request Scheduling

Conflicting transactions are common

< Stock Exchange: popular stocks

< Live Selling: popular products

When they concurrently run in different threads

b

4 Contention R

< Costly transaction aborts/blocking
< Degrade performance and waste CPU resources
¥ More serious with modern multicore servers )
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Solution: schedule conflicting transactions to the same threads



Existing Scheduling Methods

/Static data partitioning A /Batching-based scheduling A
< Each thread manages a data partition < Batching & Grouping
v Low latency v" Support dynamic workloads
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How to make the scheduler support dynamic workloads while keeping latency low?




Opportunities from FPGA-based SmartNICs

@ M FPGA-based SmartNIC

NVIDIA. Me]laHOX‘ o Tracking all in/out packets

TECHNOLOGIES

s . - Mellanox <</ v EqUIpped with an FPGA
- ova” - @0 XILINX.

Using FPGA-based SmartNICs to design a transaction scheduler is promising ...

To schedule a transaction

< Multiple keys in the transaction Have opportunities to

leverage data parallelism in FPGAs

< Multiple candidate threads

* Equipped with a full-fledged network ASIC



Challenges

Restricted expressive power

How to map transaction scheduling logic into FPGA ?
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Dynamic workloads
How to react to workload changes quickly?




Outline

<+ AINiCo: a Contention-aware Transaction Scheduler



Overview

On-SmartNIC Contention-aware Transaction Scheduler

ll Transaction Request

On-SmartNIC scheduling algorithm H
Software feedback mechanism n




Overview

Contention-aware Transaction Scheduler

o Request: where should | go?

Request state
to describe the resources required by a transaction

Worker state
« to describe the resources that workers are accessing or will access

Global state
to describe workload characteristics (e.g., hotspots)

J Scheduler: you should be sent to worker-i.



Key Designs

#® Restricted expressive power
&) States for scheduling — Vectors

&} Scheduling algorithm — Vector computation

# Dynamic workloads

&3 Software feedback mechanism



States for Scheduling: Vectors (1)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector

op-0: read<Table,, Key,>

Index = Hash(Table-ID, Key) % L

op-1: write<Table,, Keyg>

. x|

Feature vector Tx’s Parameters



States for Scheduling: Vectors (1)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector

Index = Hash(Table-ID, Key) % L

op-0: read<Table,, Key,>

Feature vector

Request Format

. x|

op-1: write<Table,, Keyg>

Tx’s Parameters

New Header

Features Parameters




States for Scheduling: Vectors (1)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector

[ Index = Hash(Table-ID, Key) % L ]

Requirements
< Goal: to avoid hash collisions

< Keys of different tables should be
mapped into different features

% The number of features of a table

should be proportional to its size
g J

A transaction ~

op-0: read<Table,, Key,>

op-1: write<Table,, Keyg>

Tx’s Parameters
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Feature vector



States for Scheduling: Vectors (1)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector

[ Index = Hash(Table-ID, Key) % L ]

Corner cases

\
< Range queries: randomly
generate the keys in the ranges
< Non-primary keys: maintain a
| secondary-index cache )

A transaction ~

op-0: read<Table,, Key,>

op-1: write<Table,, Keyg>

Tx’s Parameters

10011 B11 0 § RN

Feature vector



States for Scheduling: Vectors (ll)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector (generated by clients)

+Worker state
< Each worker has a worker feature vector: ongoing Txns’ feature vectors(updated by FPGA)

< Each worker has a steering vector: steering rules

< Global state

< A weight vector: feature’s hotness



Scheduling Algorithm: Vector Computation

Making scheduling decisions with FPGA acceleration

< Step# |: get the same features between the new request and each worker

=—H VWorker features
£ [11 .
s \VWorker steering

Request features

@ Worker features
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Scheduling Algorithm: Vector Computation

Making scheduling decisions with FPGA acceleration

< Step# |: get the same features between the new request and each worker

s \VWorker steering AND AND result
Stepitl

AND AND result

5@; Worker features
e all  VWorker steering
Request features



Scheduling Algorithm: Vector Computation

Making scheduling decisions with FPGA acceleration
< Step# |: get the same features between the new request and each worker
< Step#2: calculate a for each worker

< Step#3: select the worker with the highest contention rank

e
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Scheduling Algorithm: Vector Computation

Making scheduling decisions with FPGA acceleration
< Step# |: get the same features between the new request and each worker
< Step#2: calculate a for each worker

< Step#3: select the worker with the highest contention rank
FPGA acceleration

< Step# |: Data parallelism +
< Step#2: Sum reduction +

< Step#3: Max reduction

/2
L

Sum reduction



Software Feedback Mechanism

Worker threads periodically update the states in the hardware

<+ Weight vector

< Goal: to describe the hotspots in transaction systems

< The keys that cause contention frequently are hotspots and have higher weights
< Steering vector

% Goal: to schedule transactions with less contention to different workers

NN

Weight vector




Software Feedback Mechanism

< Steering vector

% Goal: to schedule transactions with less contention to different workers
% Select the hottest N features

MENNNENN ) (AR

Weight vector
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Steering vectors



Software Feedback Mechanism

< Steering vector

% Goal: to schedule transactions with less contention to different workers
% Select the hottest N features

< Assign these N features to different workers
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Software Feedback Mechanism

< Steering vector

% Goal: to schedule transactions with less contention to different workers
% Select the hottest N features

< Assign these N features to different workers

< Each worker steers a hot feature exclusively
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Weight vector
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Steering vectors

<+ The FPGA fetches weight vector and steering vectors via DMA



More Details: checkout our paper

< Other design details
< How to describe the read/write modes in features
< When to update the weight vector and steering vectors

L)

< How to reserve CPU cores for long running transactions via AINiCo

4

< How to support various CC protocols
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Implementation on Mellanox Innova-2

.............................. %@% Network
‘ o 24 | NIC ASIC GA ’ - =:->MMIO
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SmartNIC FPGA | N
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Host v 4 ! ]
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RPC data + 1 poll CQi@ 1RPC reply
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A scheduling-enabled RDMA RPC Fundamental drivers
O The client writes RPC data to the host (RDMA write) + NIC to FPGA (PCle P2P)

@ The client writes the feature vector to the FPGA (RDMA write) + FPGA to HOST (DMA)

© The FPGA schedules the request and writes a worker’s CQ (DMA)
O The Worker polls a CQ entry and executes the corresponding transaction
© The Worker sends a reply to the client (RDMA write)



Outline

<+ Results



Experimental Setup

Hardware Platform Configuration
CPU 2 Intel 12-core Xeon E5-2650 CPUs FPGA frequency | 250MHz
Client’s NIC | 100Gbps Mellanox ConnectX-5 Feedback epoch 20ms
Server’s NIC | 25Gbps X2 Mellanox Innova-2 Vector length 512

Competitors

NetSTO RDMA-based RPC + STOv2 [VLDB’20]

StaticPart Static data partitioning, TPC-C: warehouse ID, YCSB: table ID

Strife [SIGMOD’20] | Batching-based scheduling, batch size: 10K transactions or S5ms

Benchmarks: TPC-C, YCSB-T, TCSB-HOT
CC Protocols: Silo (default configuration), TicToc, Cicada, 2PL



Overall Performance (Throughput)

TPC-C YCSB-HOT
< 20 workers for normal transactions < |6 keys in each transaction
< 2 workers for long running transactions < write-read ratio: 50/50

< hotspots change every 2s

Partitionable Skewed Not Partitionable Dynamic
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AINiCo effectively improves throughput and reacts quickly to hotspot changes.



Overall Performance (Latency)

TPC-C Latency

< 2 warehouses (high-contention, not partitionable)

{1 StaticPart & StaticPart@ AINiCo
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AINiCo does not introduce extra latency for scheduling.
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Generality
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Generality of AINiCo TPC-C, 2 warehouses

@ CC p rOtOCOIS: S”O, TiCTOC ’ Cicada’ 2 PL ‘Speedy Transactions in Multicore In-Memory Databases
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Cicada: Dependably Fast Multi-Core In-Memory Transactions

o
o
AN
(00]

Hyeontaek Lim Michael Kaminsky David G. Andersen du
Carnegie Mellon University Intel Labs Carnegie Mellon University
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AINiCo is generalized for different CC protocols.




Comparison with CPU-version AINiCo
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The necessity of SmartNICs
< AINiICo-CPU-2: reserve two threads to execute the scheduling logic
< AINiCo-CPU-N: co-locate the worker logic and scheduler logic in each thread

The SmartNIC can efficiently reduce scheduling overhead.



Overhead of AINiCo

The extra latency for PCle

pcie

DDR4

g

Ethernet
—_—

InfiniBand

~

Median Latency of Null RPC (no contention)
_--
NetSTO 3.7us 4us  6.7us 13.4us

AlNiCo 10.7us  10.7us  10.9us  13.9us
Delta +7us +6.7us +3.2us +0.5us

“ConneceX - 5 \ 2 extra

PCle communications

Median latency of TPC-C

New-order

51.8us

26.5us
-25.3us
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% Summary



Summary

<+ Goal

< Scheduling transaction requests to reduce contention with low scheduling latency
<+ Key ldea

< Using FPGA-based SmartNICs, with hardware-software co-design
< Techniques in AINiCo

< Describe the transaction scheduling algorithm in a hardware-friendly manner
< Provide generalized feedback interfaces

< Results
< AINiCo outperforms state-of-the-arts

< AINiCo is generalized for various CC protocols and applications
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