USENIX
ATC '22

AR
EVALUATED EVALUATED

AVAILABLE

AINiICo: SmartNIC-accelerated Contention-aware
Request Scheduling for Transaction Processing

REPRODUCED

Junru Li, Youyou Lu, Qing Wang, Jiazhen Lin, Zhe Yang, Jiwu Shu

Transaction Request Scheduling

Conflicting transactions are common

< Stock Exchange: popular stocks

< Live Selling: popular products

When they concurrently run in different threads

b

4 Contention R

< Costly transaction aborts/blocking
< Degrade performance and waste CPU resources
¥ More serious with modern multicore servers)

@ a

o

o
W

Transaction

TB Request
[Bob) Alice
(_Alice)\ Carol
- — -Txn, .z -Txn;
N
7\
o K2

Solution: schedule conflicting transactions to the same threads

Existing Scheduling Methods

/Static data partitioning A /Batching-based scheduling A
< Each thread manages a data partition < Batching & Grouping
v Low latency v" Support dynamic workloads

_ * Not support dynamic workloads =~/ _ x High latency for batching Y,

T, 3] |3 Tn mr»r W*ﬂwl $3322332| 2 5ms in Strife

333 333 33 [SIGMOD’20]

IIIIIIIIIIII M M . .

- H - - = = =

-l - - - =] (@)]

- - - - -l - -}

=E: :E: :E: s , , , , E E E
IIIIII E 24 40 48 -||||||- -||||||- -||||||-

8
Time (100ms)

How to make the scheduler support dynamic workloads while keeping latency low?

Opportunities from FPGA-based SmartNICs

@ M FPGA-based SmartNIC

NVIDIA. Me]laHOX‘ o Tracking all in/out packets

TECHNOLOGIES

s . - Mellanox <</ v EqUIpped with an FPGA
- ova” - @0 XILINX.

Using FPGA-based SmartNICs to design a transaction scheduler is promising ...

To schedule a transaction

< Multiple keys in the transaction Have opportunities to

leverage data parallelism in FPGAs

< Multiple candidate threads

* Equipped with a full-fledged network ASIC

Challenges

Restricted expressive power

How to map transaction scheduling logic into FPGA ?

e e ol e e e e e e il il e
[4 Y I gy

*

& ol B e ol o e e

 IEEIXXXLE
T T TTrYTY
R

L e e e ol e s o o

1r;n'¢n;h

ol ol ool e e e o ol o oo
B ol el o
T EIEIEIEEEIEEE]

H
H
H
H
H
H
H
H

Dynamic workloads
How to react to workload changes quickly?

Outline

<+ AINiCo: a Contention-aware Transaction Scheduler

Overview

On-SmartNIC Contention-aware Transaction Scheduler

ll Transaction Request

On-SmartNIC scheduling algorithm H
Software feedback mechanism n

Overview

Contention-aware Transaction Scheduler

o Request: where should | go?

Request state
to describe the resources required by a transaction

Worker state
« to describe the resources that workers are accessing or will access

Global state
to describe workload characteristics (e.g., hotspots)

J Scheduler: you should be sent to worker-i.

Key Designs

#® Restricted expressive power
&) States for scheduling — Vectors

&} Scheduling algorithm — Vector computation

Dynamic workloads

&3 Software feedback mechanism

States for Scheduling: Vectors (1)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector

op-0: read<Table,, Key,>

Index = Hash(Table-ID, Key) % L

op-1: write<Table,, Keyg>

. x|

Feature vector Tx’s Parameters

States for Scheduling: Vectors (1)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector

Index = Hash(Table-ID, Key) % L

op-0: read<Table,, Key,>

Feature vector

Request Format

. x|

op-1: write<Table,, Keyg>

Tx’s Parameters

New Header

Features Parameters

States for Scheduling: Vectors (1)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector

[Index = Hash(Table-ID, Key) % L]

Requirements
< Goal: to avoid hash collisions

< Keys of different tables should be
mapped into different features

% The number of features of a table

should be proportional to its size
g J

A transaction ~

op-0: read<Table,, Key,>

op-1: write<Table,, Keyg>

Tx’s Parameters

10011 B11 0 § RN

Feature vector

States for Scheduling: Vectors (1)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector

[Index = Hash(Table-ID, Key) % L]

Corner cases

\
< Range queries: randomly
generate the keys in the ranges
< Non-primary keys: maintain a
| secondary-index cache)

A transaction ~

op-0: read<Table,, Key,>

op-1: write<Table,, Keyg>

Tx’s Parameters

10011 B11 0 § RN

Feature vector

States for Scheduling: Vectors (ll)

States for scheduling: request state, worker state, global state

<+ Request state

< Request feature vector (generated by clients)

+Worker state
< Each worker has a worker feature vector: ongoing Txns’ feature vectors(updated by FPGA)

< Each worker has a steering vector: steering rules

< Global state

< A weight vector: feature’s hotness

Scheduling Algorithm: Vector Computation

Making scheduling decisions with FPGA acceleration

< Step# |: get the same features between the new request and each worker

=—H VWorker features
£ [11 .
s \VWorker steering

Request features

@ Worker features
St

Scheduling Algorithm: Vector Computation

Making scheduling decisions with FPGA acceleration

< Step# |: get the same features between the new request and each worker

s \VWorker steering AND AND result
Stepitl

AND AND result

5@; Worker features
e all VWorker steering
Request features

Scheduling Algorithm: Vector Computation

Making scheduling decisions with FPGA acceleration
< Step# |: get the same features between the new request and each worker
< Step#2: calculate a for each worker

< Step#3: select the worker with the highest contention rank

e
- 1 -
AND AND result ®

s \VWorker steering

stepr1 DOT [l stepm2
PRODUCT

T orker features 3 Stepit3
AND e E

e all VWorker steering

Request features DOT

PRODUCT

Scheduling Algorithm: Vector Computation

Making scheduling decisions with FPGA acceleration
< Step# |: get the same features between the new request and each worker
< Step#2: calculate a for each worker

< Step#3: select the worker with the highest contention rank
FPGA acceleration

< Step# |: Data parallelism +
< Step#2: Sum reduction +

< Step#3: Max reduction

/2
L

Sum reduction

Software Feedback Mechanism

Worker threads periodically update the states in the hardware

<+ Weight vector

< Goal: to describe the hotspots in transaction systems

< The keys that cause contention frequently are hotspots and have higher weights
< Steering vector

% Goal: to schedule transactions with less contention to different workers

NN

Weight vector

Software Feedback Mechanism

< Steering vector

% Goal: to schedule transactions with less contention to different workers
% Select the hottest N features

MENNNENN) (AR

Weight vector

1101010101110

Steering vectors

Software Feedback Mechanism

< Steering vector

% Goal: to schedule transactions with less contention to different workers
% Select the hottest N features

< Assign these N features to different workers

NENNEENN) AR) &

Weight vector

1101010101110

Steering vectors

Software Feedback Mechanism

< Steering vector

% Goal: to schedule transactions with less contention to different workers
% Select the hottest N features

< Assign these N features to different workers

< Each worker steers a hot feature exclusively

010 - i
EENNNEEN TENETTE)4k

Weight vector

ojEIolL -+~ | {m;

Steering vectors

<+ The FPGA fetches weight vector and steering vectors via DMA

More Details: checkout our paper

< Other design details
< How to describe the read/write modes in features
< When to update the weight vector and steering vectors

L)

< How to reserve CPU cores for long running transactions via AINiCo

4

< How to support various CC protocols

L)

\/
0’0

Implementation on Mellanox Innova-2

.............................. %@% Network
‘ o 24 | NIC ASIC GA ’ - =:->MMIO
v | © A
- | —>DMA
{RPC features J I
SmartNIC FPGA | N
... PCle
Host v 4 !]
| m OO - @
RPC data + 1 poll CQi@ 1RPC reply
workers {':J?:F {':J?:E o {'::':E—] [MWfeedback
A scheduling-enabled RDMA RPC Fundamental drivers
O The client writes RPC data to the host (RDMA write) + NIC to FPGA (PCle P2P)

@ The client writes the feature vector to the FPGA (RDMA write) + FPGA to HOST (DMA)

© The FPGA schedules the request and writes a worker’s CQ (DMA)
O The Worker polls a CQ entry and executes the corresponding transaction
© The Worker sends a reply to the client (RDMA write)

Outline

<+ Results

Experimental Setup

Hardware Platform Configuration
CPU 2 Intel 12-core Xeon E5-2650 CPUs FPGA frequency | 250MHz
Client’s NIC | 100Gbps Mellanox ConnectX-5 Feedback epoch 20ms
Server’s NIC | 25Gbps X2 Mellanox Innova-2 Vector length 512

Competitors

NetSTO RDMA-based RPC + STOv2 [VLDB’20]

StaticPart Static data partitioning, TPC-C: warehouse ID, YCSB: table ID

Strife [SIGMOD’20] | Batching-based scheduling, batch size: 10K transactions or S5ms

Benchmarks: TPC-C, YCSB-T, TCSB-HOT
CC Protocols: Silo (default configuration), TicToc, Cicada, 2PL

Overall Performance (Throughput)

TPC-C YCSB-HOT
< 20 workers for normal transactions < |6 keys in each transaction
< 2 workers for long running transactions < write-read ratio: 50/50

< hotspots change every 2s

Partitionable Skewed Not Partitionable Dynamic

@ NetSTO (@ StaticPart @ Strife @ AINiICo —@®= NetSTO Strife
i i StaticPart

—
=
. v-="

N
o

N
=)

-
(6]
1
N
(@)}

o

(&)

o

(®)]
T

Throughput (M Txns/s)
o
Throughput (M Txns/s)
o

20 warehouses 20 warehouses 2 warehouses 2 4 6 8 2022242628 40 42 44 46 48 50
Zipf 6=0.99 Time (100ms)

(@]

o

AINiCo effectively improves throughput and reacts quickly to hotspot changes.

Overall Performance (Latency)

TPC-C Latency

< 2 warehouses (high-contention, not partitionable)

{1 StaticPart & StaticPart@ AINiCo

3x10%

2x10%

RN
o
AN

New-Order

P50 Latency (us)

Batching

| 65 X

0.5 1.0 2.0

Total throughput(M Txns/s)

{1 StaticPart & StaticPart-@ AINiCo
3x10*

2x10%

Delivery

P50 Latency (us)

10*

Batching

.
¢ "¢ ¢ o o e & & e e e o

¢ ¢ ¢ o o & e e e e e

. .
¢ "¢ ¢ o o f e o & e e e e

e ¢ ¢ ¢ o f ¢ o e e e e o

0.5 1.0
Total throughput(M Txns/s)

AINiCo does not introduce extra latency for scheduling.

2.0

Generality

9 NetSTO @ +AINiICo

N
o

RN
(@)

o
[3)

Throuputput (M Txns/s)
o

12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 O 4 8 12 16 2
of worker threads

Generality of AINiCo TPC-C, 2 warehouses

@ CC p rOtOCOIS: S”O, TiCTOC ’ Cicada’ 2 PL ‘Speedy Transactions in Multicore In-Memory Databases

| TicToc: Time Traveling Optimistic Concurrency Control
Cicada: Dependably Fast Multi-Core In-Memory Transactions

o
o
AN
(00]

Hyeontaek Lim Michael Kaminsky David G. Andersen du
Carnegie Mellon University Intel Labs Carnegie Mellon University
hl@cs.cmu.edu michael.e.kaminsky@intel.com dga@cs.cmu.edu

AINiCo is generalized for different CC protocols.

Comparison with CPU-version AINiCo

@ NetSTO ¢ +AINICo-CPU-2 3 +AINiCo-CPU-N @ +AINiCo

N
o

-
6))

-
o

Waste CPU

o
o

Bottlenecked
by the scheduler

Throuputput (M Txns/s)

o
(@)
AN
oo

12 16 20

of worker threads
TPC-C, 2 warehouses, Silo

The necessity of SmartNICs
< AINiICo-CPU-2: reserve two threads to execute the scheduling logic
< AINiCo-CPU-N: co-locate the worker logic and scheduler logic in each thread

The SmartNIC can efficiently reduce scheduling overhead.

Overhead of AINiCo

The extra latency for PCle

pcie

DDR4

g

Ethernet
—_—

InfiniBand

~

Median Latency of Null RPC (no contention)
_--
NetSTO 3.7us 4us 6.7us 13.4us

AlNiCo 10.7us 10.7us 10.9us 13.9us
Delta +7us +6.7us +3.2us +0.5us

“ConneceX - 5 \ 2 extra

PCle communications

Median latency of TPC-C

New-order

51.8us

26.5us
-25.3us

Outline

% Summary

Summary

<+ Goal

< Scheduling transaction requests to reduce contention with low scheduling latency
<+ Key ldea

< Using FPGA-based SmartNICs, with hardware-software co-design
< Techniques in AINiCo

< Describe the transaction scheduling algorithm in a hardware-friendly manner
< Provide generalized feedback interfaces

< Results
< AINiCo outperforms state-of-the-arts

< AINiCo is generalized for various CC protocols and applications

USENIX
ATC '22

Thanks

AINiICo: SmartNIC-accelerated Contention-aware
Request Scheduling for Transaction Processing

Contact Information: lijrl19@mails.tsinghua.edu.cn

