
AlNiCo: SmartNIC-accelerated Contention-aware
Request Scheduling for Transaction Processing

Junru Li

Transaction Request Scheduling

Conflicting transactions are common

❖Stock Exchange: popular stocks

❖Live Selling: popular products

Txn1
Txn2 Txn3

When they concurrently run in different threads

Contention
❖ Costly transaction aborts/blocking
❖ Degrade performance and waste CPU resources

❖ More serious with modern multicore servers

Existing Scheduling Methods

Static data partitioning
❖

✓ Low latency

 Not support dynamic workloads

Batching-based scheduling
❖

✓ Support dynamic workloads

 High latency for batching

Txn1Txn0 ≥ 5ms in Strife
[SIGMOD’20]

dynamic workloads keeping latency low?

Opportunities from FPGA-based SmartNICs

FPGA-based SmartNIC

❖

❖

❖

❖

To schedule a transaction
❖

❖

Challenges

Restricted expressive power
How to map transaction scheduling logic into FPGA ?

Dynamic workloads
How to react to workload changes quickly?

❖

❖

❖

❖

Outline

Overview

On-SmartNIC Contention-aware Transaction Scheduler

• On-SmartNIC scheduling algorithm

• Software feedback mechanism

Overview

Scheduler: you should be sent to worker-i.

Request: where should I go？

Request state

Worker state

Global state

Contention-aware Transaction Scheduler

Key Designs

⛈ Restricted expressive power

🌞 States for scheduling → Vectors

🌞 Scheduling algorithm → Vector computation

⛈ Dynamic workloads

🌞 Software feedback mechanism

States for scheduling: request state, worker state, global state

❖ Request state
❖

op-0: read<Table0，KeyA>

op-1: write<Table1，KeyB>
Index = Hash(Table-ID, Key) % L

Tx’s Parameters Feature vector

×L1 1

Request Format

States for Scheduling: Vectors（1）

States for scheduling: request state, worker state, global state

❖ Request state
❖

op-0: read<Table0，KeyA>

op-1: write<Table1，KeyB>
Index = Hash(Table-ID, Key) % L

Tx’s ParametersFeature vector

Request Format

×L1 1

New Header

States for Scheduling: Vectors（1）

早日毕业’

States for scheduling: request state, worker state, global state

❖ Request state
❖

op-0: read<Table0，KeyA>

op-1: write<Table1，KeyB>

Index = Hash(Table-ID, Key) % L

Tx’s Parameters

States for Scheduling: Vectors（1）

❖ Goal: to avoid hash collisions

❖

❖

Feature vector

×L1 1

早日毕业’

States for scheduling: request state, worker state, global state

❖ Request state
❖

op-0: read<Table0，KeyA>

op-1: write<Table1，KeyB>

Index = Hash(Table-ID, Key) % L

Tx’s Parameters

States for Scheduling: Vectors（1）

❖ Range queries:

❖ Non-primary keys:

Feature vector

×L1 1

States for scheduling: request state, worker state, global state

Global state

Worker state

Request state

States for Scheduling: Vectors （II）

States for scheduling: request state, worker state, global state

❖ Request state
❖ Request feature vector

❖Worker state
❖ worker feature vector

❖ steering vector

❖ Global state
❖ weight vector

Making scheduling decisions with FPGA acceleration

❖

Scheduling Algorithm: Vector Computation

1

N

Making scheduling decisions with FPGA acceleration

❖

Scheduling Algorithm: Vector Computation

1

N

Step#1

Making scheduling decisions with FPGA acceleration

❖

❖ contention rank

❖

Scheduling Algorithm: Vector Computation

1

N

Step#1 Step#2

Step#3

Making scheduling decisions with FPGA acceleration

❖

❖ contention rank

❖

FPGA acceleration

❖

❖

❖

Scheduling Algorithm: Vector Computation

Sum reduction

Software Feedback Mechanism

Worker threads periodically update the states in the hardware

❖ Weight vector

❖

❖ cause contention frequently

❖ Steering vector
❖

×L

Weight vector

Software Feedback Mechanism

×L

1 1 1111 11

❖ Steering vector
❖

Steering vectors

1

N

21 1 1111 11

1 1 1111 11
Weight vector

Hot features

❖

Software Feedback Mechanism

×L

1 1 1111 11

❖ Steering vector
❖

Steering vectors

1

N

21 1 1111 11

1 1 1111 11
Weight vector

Hot features

❖

❖

Software Feedback Mechanism

×L

0 1 1111 01

❖ Steering vector
❖

Steering vectors

1

N

20 1 1111 10

1 1 1111 00
Weight vector

Hot features

❖

❖

❖

❖ The FPGA fetches weight vector and steering vectors via DMA

More Details: checkout our paper

❖ Other design details
❖

❖

❖

❖

❖

Implementation on Mellanox Innova-2

A scheduling-enabled RDMA RPC

 RPC data

 the feature vector









NIC ASIC

FPGA







Fundamental drivers
❖

❖

❖

❖

❖

❖

Outline

Experimental Setup

Hardware Platform

CPU

Client’s NIC

Server’s NIC

Competitors

NetSTO STOv2

StaticPart

Strife

Benchmarks:

CC Protocols:

Configuration

FPGA frequency

Feedback epoch

Vector length

Overall Performance (Throughput)

TPC-C
❖

❖

YCSB-HOT
❖

❖

❖

×
×

Partitionable Not PartitionableSkewed

ms

Dynamic

Overall Performance (Latency)

TPC-C Latency

❖

New-Order Delivery

Batching
overhead

Batching
overhead

× 8.4 ×

The necessity of SmartNICs

Generality

Generality of AlNiCo
❖

Silo TicToc Cicada 2PL
.45 × .45 ×

× .28 ×

Generality

The necessity of SmartNICs
❖ AlNiCo-CPU-2 two threads

❖ AlNiCo-CPU-N co-locate

Comparison with CPU-version AlNiCo

Silo

Bottlenecked

by the scheduler

Waste CPU

Generality

The extra latency for PCIe

Overhead of AlNiCo

Delta +7μs +6.7μs +3.2μs +0.5μs

Median Latency of Null RPC (no contention)

New-order

-25.3μs

❖

❖

❖

❖

Outline

❖ Goal
❖

❖ Key Idea
❖

❖ Techniques in AlNiCo
❖

❖

❖ Results

❖

❖

Summary

Contact Information: lijr19@mails.tsinghua.edu.cn

AlNiCo: SmartNIC-accelerated Contention-aware
Request Scheduling for Transaction Processing

