
Emerging Parallel

Computing Center

Help Rather Than Recycle: Alleviating Cold Startup
in Serverless Computing Through Inter-Function

Container Sharing

Zijun Li , Linsong Guo, Quan Chen, Jiagan Cheng, and Chuhao Xu, Shanghai Jiao Tong University;
Deze Zeng, China University of Geosciences; Zhuo Song, Tao Ma, and Yong Yang, Alibaba Cloud;

Chao Li and Minyi Guo, Shanghai Jiao Tong University

EPCC

USENIX ATC 2022

2

Introduction & Background

Pagurus

• Definition of serverless (FaaS).

• What are advantages and limitations?

Introduction & Background

What is Serverless?

Berkerly’s View: “Serverless = FaaS (Function-as-a-Service) + BaaS (Backend-as-a-Service)”

FaaS system

request

results

BaaS services

Interact

Introduction & Background

What are the advantages of using serverless model?

Infrastructure-as-a-Service Function-as-a-Service

❑ Vertical resource scaling with remained

❑ Maintain the underlying environment

Auto horizontal scaling without remained

Offloaded environment management

❑

❑

❑ Pay-as-time, low resource utilization Pay-as-invocation, high resource utilization ❑

Introduction & Background

The most significant features of serverless computing

⚫ Auto-scaling

⚫ Others (offloaded management, flexible scheduling, pay-as-you-go costing model)

⚫ Event-driven

Fine-grained
resource scaling

2

Containers created
on-demand

1

Serverless features Serverless benefits

High-density and
high-concurrency

2

Containers cold
startups

1

Derived challenges

Why we should alleviate cold startups?

The view from a node：

Cold startup Invocations

are less than 1%

The view from tenants：

80% of functions frequently

experience cold startups

2 Req/min

1 Req/min

3 Req/h

1 Req/h

2 Req/min

……

……Warm startup
Apps(20%)

Cold startup
Apps(80%)

Warm startup
invocations(>99%)

Cold startup
invocations(<1%)

Functions-invocations follow a Pareto distribution.

• 20% of popular functions occupy 99.6% of overall invocations (observed from Azure trace).

Introduction & Background

7

• How to alleviate cold startups?

• Does the current method work efficiently?

Pagurus

Introduction & Background

Motivation

Leveraging prewarmed container to alleviate cold startups:

• Exclusive size-fixed prewarm pool:

good and stable performance, easy to implement

need to adjust the pool size for each function

many long-term running prewarmed and idle containers consume resources

Motivation

……initialization join

initialization joinCold startups

Size-fixed prewarm pool

Cold startups

Leveraging prewarmed container to alleviate cold startups :

• Template-based shared prewarm pool:

Resource-friendly

All functions use the same template image, easy to maintain

Specialization phases introduce unpredictable overhead.

Motivation

……join

joinCold startups

Specialization

Template
container

Specialization

Cold startups

The unpredictable overhead of specialization.

Motivation

• five functions are triggered simultaneously by a caller in eco.

• Concurrent invocations from these functions contend for the prewarmed containers

……
High-concurrency invocation Prewarm pool breakdown

The unpredictable overhead of specialization.

Motivation

Pkg_a2: 1.0

Pkg_b_a: 2.0

Pkg_ c: 2.2

Pkg_a1: 1.0

Pkg_b_a: 2.0

Pkg_ c: 2.0

Specialization
conflict

Pkg conflict Sub-pkg in b conflict Version conflict

……
High-concurrency invocation

Conflict with template image

Prewarm pool breakdown

Retry with cold startup

The unpredictable overhead of specialization.

Motivation

……
High-concurrency invocation

Conflict with template image

Prewarm pool break down

Retry with cold startup

• ddns requires to load/install many additional packages in the prewarmed containers

• the package loading is time-consuming, even slower than directly cold startup.

Functions need additional libs High loading overhead

Additional trade-offs of template-based prewarm pool.

Motivation

2 Req/min

1 Req/min

3 Req/h

1 Req/h

2 Req/min

……

……Warm startup
Apps(20%)

Cold startup
Apps(80%)

Warm startup
invocations(>99%)

Cold startup
invocations(<1%)

Build templates for

99% invocations

(more cold startups

for 80% cold Apps)

Build templates for

80% cold apps

(more cold startups

for 99% invocations)

Motivation

Exclusive prewarm vs template-based prewarm:

• Exclusive prewarm method:

to save resource, need to adjust pool size dynamically.

profiling and predicting -> need to build model for each function

-> infrequent functions do not have enough trace to train

• Template-based prewarm:

three unpredictable overhead of specialization

need to make several trade-offs

The current prewarm method is not efficient due to several inevitable trade-offs.
It is beneficial to alleviate cold startups without trapping in the same dilemmas.

15

• Reusing idle containers

• Build Zygote containers for sharing

• SF-WRS based scheduling policy

Pagurus

Introduction & Background

Motivation

Methodology & Design

Methodology & Design

Cold startup alleviation accelerating - Pagurus

Can we reuse idle containers for functions to avoid cold startups like Pagurus?

Methodology & Design

Help rather than recycle – idle containers

Timeline

Container
idle

20%

100%

Timeline

serving

Keep-alive
(idle)

recycle

Feasibility of reusing idle containers

• Serverless platforms use keep-alive strategy to reduce cold startups

• Diurnal pattern wildly exist in many applications

• Containers become idle and recycled 15min later

Methodology & Design

Help rather than recycle – Zygote containers

• The zygote container serve as a safe checkpoint that any function is not invoked

• Set shared domain and privilege domain

• Other to-be-helped functions are mounted anonymously

• Executor invoke functions with non-root users

Methodology & Design

Help rather than recycle –scheduling and forking Zygotes

• Identifying idle containers for each function

• Build Zygote image, and replace an idle container with a Zygote

• Fork a Zygote to be a helper container for cold startup functions if it mounted

• Unmount and helper container join in corresponding container pool

Function A pool

idle

Function A pool

Pkg
a

Pkg
b

Pkg
c

configs

Zygote
image

replace

Function A pool

fork

Mounted to-be-helped functions

Methodology & Design

How to arrange zygote containers for appropriate forking?

— SF-WRS (Similarity Filtered Weighted Random Sampling)

• Select to-be-helped functions:

based on the similarity of functions’ packages (cosine)

set similarity as 0 if conflict exist

WRS makes to-be-helped functions more likely to be repacked if it has more cold startups

(pkg: a,b,c,d)

(pkg: b,c,e)
cos = 0.577

(pkg: a,b,c)
cos = 0.866

(pkg: a,e,f)
cos = 0.288

Filter to-be-helped
candidates WRS

Cold startup
times: 8

Cold startup
times: 2

P(Repack) = 0.8

Zygote

P(Repack) = 0.2

21

Pagurus

Introduction & Background

Methodology & Design

Evaluation

Motivation

Evaluation

Evaluation setups:

• Baselines:

OpenWhisk with AWS application samples and Azure trace day07.

• Software and hardware setup:

Evaluation

Key improvements in Azure trace:

Alleviate most functions’ cold
startups, 73.4% of functions no

longer need cold startups

84.6%+

Lower 95%-ile latency, especially
for mid-popular functions

p95latency-

Reduce cold startup response
latency to 16ms if it need

additional packages

20ms-

24

Pagurus

Introduction & Background

Rationale & Design

Conclusion

Evaluation

Motivation

Conclusion

Summary:

• Resource-friendly and security-ensured Zygote design.

• Shared domain and privilege domain.

• Replacing idle containers as Zygote containers for inter-function sharing.

• Reusing others’ Zygote containers to alleviate cold startups.

• SF-WRS based Zygote arrangement and scheduling.

• Calculate cosine distance as similarity to improve sharing efficiency

Another related track presentation:

RunD: A Lightweight Secure Container Runtime for High-density Deployment and High-concurrency Startup in

Serverless Computing Introduces how to enable high-density and high-concurrency startup

26
Pagurus

Thanks!
Q&A

Zijun Li, lzjzx1122@sjtu.edu.cn;

Linsong Guo, gls1196@sjtu.edu.cn;

Quan Chen, chen-quan@cs.sjtu.edu.cn;

Jiagan Chen, chengjiagan@sjtu.edu.cn;

Chuhao Xu, barrin@sjtu.edu.cn;

Deze Zeng, deze@cug.edu.cn;

Zhuo Song, songzhuo.sz@alibaba-inc.com;

Tao Ma, boyu.mt@alibaba-inc.com;

Yong Yang, zhiche.yy@alibaba-inc.com;

Chao Li, lichao@cs.sjtu.edu.cn;

Minyi Guo, guo-my@cs.sjtu.edu.cn;

mailto:lzjzx1122@sjtu.edu.cn
mailto:gls1196@sjtu.edu.cn
mailto:chen-quan@cs.sjtu.edu.cn
mailto:chengjiagan@sjtu.edu.cn
mailto:guo-my@cs.sjtu.edu.cn

