ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

Epiilo @y RN USEN IX ATC 2022

Help Rather Than Recycle: Alleviating Cold Startup
in Serverless Computing Through Inter-Function
Container Sharing

Zijun Li®, Linsong Guo, Quan Chen, Jiagan Cheng, and Chuhao Xu, Shanghai Jiao Tong University;
Deze Zeng, China University of Geosciences; Zhuo Song, Tao Ma, and Yong Yang, Alibaba Cloud;
Chao Li and Minyi Guo, Shanghai Jiao Tong University

)

Alibaba Cloud (&) Y454 4%

2 &)
e/ SHANGHALI JIAO TONG UNIVERSITY

Introduction & Background

l

B

e Definition of serverless (FaaS).

 What are advantages and limitations?

PSS) i il o A i

e

Pagurus

Introduction & Background =

AN A
S -
v NN O l)

What is Serverless?

Berkerly’s View: “Serverless = Faa$S (Function-as-a-Service) + Baa$ (Backend-as-a-Service)”

= mm o E— oy,

/ \
p————— - N | -'- Queue | |
ﬁ A ‘ A -\ | [0 Service | |
. | |
> B |
| @ 7 DevOps
I I I . tool |
: | Interact |
I I 6-?-6 Trigger |
! O = |
request : ! I E\ Data | |
: I AZ‘ g I | ®© Cache | |
) results |\ ;: ’I : Dsiﬁzzze :
—————— - ‘ /
FaaS system S=————-

Baa$s services

Introduction & Background

What are the advantages of using serverless model?

>
>

Q, Infrastructure-as-a-Service Function-as-a-Service Q

U Vertical resource scaling with remained Auto horizontal scaling without remained
O Maintain the underlying environment Offloaded environment management [

O Pay-as-time, low resource utilization Pay-as-invocation, high resource utilization [

Introduction & Background .
/IN\F=TSITU

The most significant features of serverless computing

Serverless features Serverless benefits Derived challenges

]/Containers created]/Containers cold
o e
Event-driven Bl o-demand m) startups
Z/Fine-grained Z/High-density and
® - i # # .
Auto-scaling resource scaling high-concurrency

® Others (offloaded management, flexible scheduling, pay-as-you-go costing model)

Introduction & Background =

/ YN\TF=SJTUl 1L
Why we should alleviate cold startups?
- ® 2 Req/min h The view from a node .
- ”
Warm startup Warm startup Cold startup Invocations
Apps(20%) PS 1 Reg/min invocations(>99%) are less than 1%
@ ”
_ 3 Reqg/h -
- :
Cold startup | ... i Cold startup The view from tenants :
Apps(80%) @ 1Reg/h A‘ invocations(<1%) 80% of functions frequently
>
- d - experience cold startups

Functions-invocations follow a Pareto distribution.

* 20% of popular functions occupy 99.6% of overall invocations (observed from Azure trace).

Introduction & Background

l

B

Motivation

PSS) i il o A i

 How to alleviate cold startups?

e

* Does the current method work efficiently?

Pagurus

Motivation =

/7 INT=rsdTull 1L

Leveraging prewarmed container to alleviate cold startups:

* Exclusive size-fixed prewarm pool:

good and stable performance, easy to implement

need to adjust the pool size for each function

many long-term running prewarmed and idle containers consume resources

Size-fixed prewarm pool

- ~~

— M—mm 5
Al

Cold startups initialization join /

\

Il

\ J
\

Cold startups |, \ initialization join ... A‘ X
— ’ ‘*\\ - ’

-
e

Motivation —

/INF=rsuTull 1L

Leveraging prewarmed container to alleviate cold startups :

* Template-based shared prewarm pool:

Resource-friendly
All functions use the same template image, easy to maintain

Specialization phases introduce unpredictable overhead.

- ~~

—_— Specialization _A- L - _
Cold startups join [/ |Z| A A‘ A‘ y
Cold startups Template join —— X

—_—_/ container N

Specialization

Motivation e [
/INF=sJTUl 1L

The unpredictable overhead of specialization.

High-concurrency invocation ~~~_ _—" Prewarm pool breakdown

[......]

=
o
S

e
~l
w

o
N
u

o
o
o

Percentage of
Cold Startups Remained
o
ol
o

bot eco ddns etl rek file tok cart pod rep
Application Name

* five functions are triggered simultaneously by a caller in eco.

* Concurrent invocations from these functions contend for the prewarmed containers

Motivation =

The unpredictable overhead of specialization.

High-concurrency invocation —— _—" Prewarm pool breakdown
Conflict with template image = ["""] = Retry with cold startup

I : ‘) l

| | Pkg_al:1.0 Specialization . Pkg a2:1.0 |

I , ‘ conflict ’ I

! | Pkg_b a: 2.0 | >|A‘ ' Pkg_b a:2.0] |

: Pkg_c: 2.0 Pkg_c: 2.2] :

[Pkg conflict] [Sub-pkg in b conflict] [Version conflict]

Motivation e [
/INF=sJTUl 1L

The unpredictable overhead of specialization.

High-concurrency invocation —— _—" Prewarm pool break down
Conflict with template image = ["""] = Retry with cold startup
Functions need additional libs / \ High loading overhead

Bl Cold Startup (from image) B Prewarm Startup

=
wu

©
8]

Startup Latency (s)
|_l
o

o
o

bot eco ddnsetl rek file tok cart pod rep
Application Name

* ddns requires to load/install many additional packages in the prewarmed containers

* the package loading is time-consuming, even slower than directly cold startup.

Motivation

Additional trade-offs of template-based prewarm pool.

| |
|
_ E Build templates for |
- @ 2Rea/min ~ :]
PN > A I 99% invocations :
Warm startup | _ Warm startup !]
Apps(20%) ® 1 Reg/min invocations(>99%) i (more cold startups E
> |
_ A _ E for 80% cold Apps) |
_ 3 Reqg/h - L e
& S e T
Cold startup | ... - Cold :startup Build templates for
Apps(80%) ® lReg/h [} invocations(<1%)]
_ A > _ 80% cold apps

//V I \\\\3- M BU_L_/_

Motivation o =

Exclusive prewarm vs template-based prewarm:

* Exclusive prewarm method:
to save resource, need to adjust pool size dynamically.
profiling and predicting -> need to build model for each function

-> infrequent functions do not have enough trace to train
* Template-based prewarm:
three unpredictable overhead of specialization

need to make several trade-offs

The current prewarm method is not efficient due to several inevitable trade-offs.
It is beneficial to alleviate cold startups without trapping in the same dilemmas.

Introduction & Background
Motivation

Methodology & Design

« Reusing idle containers
» Build Zygote containers for sharing

* SF-WRS based scheduling policy

Methodology & Design

Cold startup alleviation accelerating - Pagurus

T
7\
Y

\\q__, -

Methodology & Design - =

/INT=rsdtull 1L

Help rather than recycle — idle containers

Keep-alive d e

A :
EContaine 100%

ol

serving | (idle)
S I S -»i recycle

» Timeline » Timeline

. J

Feasibility of reusing idle containers

* Serverless platforms use keep-alive strategy to reduce cold startups
* Diurnal pattern wildly exist in many applications

* Containers become idle and recycled 15min later

Methodology & Design

Help rather than recycle — Zygote containers

. 4)
Zygote Container 4 . shared domain | EE _f/_4__q
O— Function executor (non-root) %:y—a—i pkam pkg,,] [!j_lJJ
_______________________ _
enter corresponding%privilege domain (ro)% |£l>[s M
........... R S, =
' fA Pri .: E fB ; i i A i _|:| J
: rivate ||| | Private ||| | f Private |||: p N
i pkgx | | package | i pkgy | |Package i i c package : 1 ¢ c
VL L LA T TZEL LA L L LD AL L L LS TZZ LA L L LA L L L LLLTTZL LD =====
f f anonymous T [ljll
Host ¢)

* The zygote container serve as a safe checkpoint that any function is not invoked
* Set shared domain and privilege domain
* Other to-be-helped functions are mounted anonymously

* Executor invoke functions with non-root users

Methodology & Design

/IN\F=TSITU

Help rather than recycle —scheduling and forking Zygotes

Function A pool

AlAIA

Function A pool

Function A pool

A

idle

N

»
»

AlAIA

replace

Pkg
a) Zygote
Pka | image

(" L~)
Pkg configs
_C)

A

* Identifying idle containers for each function

A\ 4

AlAIA
SR

Mounted to-be-helped functions

* Build Zygote image, and replace an idle container with a Zygote

* Fork a Zygote to be a helper container for cold startup functions if it mounted

* Unmount and helper container join in corresponding container pool

Methodology & Design

How to arrange zygote containers for appropriate forking?

— SF-WRS (Similarity Filtered Weighted Random Sampling)

* Select to-be-helped functions:
based on the similarity of functions’ packages (cosine)

set similarity as O if conflict exist

WRS makes to-be-helped functions more likely to be repacked if it has more cold startups

(pkg: b,c,e) Cold startup

Filter to-be-helped :
cos =0.577 times: 8

candidates

(pkg: a,b,c) Cold startup
cos = 0.866 times: 2

‘.| (pkg: a,e,f)
cos =0.288

(pkg: a,b,c,d)

P(Repack) = 0.8

WRS Zygote

N
»

IXI P(Repack) = 0.2

S . ”
7 \‘_ = - =
S Lo L J

Introduction & Background

Motivation

OO OO N,
R hpdtoeeeet i §l,

Methodology & Design

Evaluation

Pagurus

Evaluation

Evaluation setups:

* PBaselines:

OpenWhisk with AWS application samples and Azure trace dayO07.

* Software and hardware setup:

Configuration

Node

CPU: Intel Xeon(Ice Lake) Platinum 8369B @3.5GHz
Cores: 8, DRAM: 16GB, Disk: 100GB SSD (3000 IOPS)

Software

Operating system: Linux with kernel 4.15.7, Docker: 20.10.6
Nginx version: nginx/1.10.3, Database: Couchdb:3.1.1
runc version: 1.0.0-rc93, containerd version: 1.4.4

Container

Container runtime: Python-3.7.0, Linux with kernel 4.15.7
Resource limit and Lifetime: 1-core with 256MB, 600s
Function container limit: 10 for each function on each node
prewarm pool size in OpenWhisk: 2 on each node

Benchmarks (
38 functions in
10 AWS Lambda
best practice
applications)

serverless-ecommerce-platform (eco), etl-orchestrator (etl)
cost-explorer-report (rep), serverless-tokenization (tok)
transcribe-comprehend-podcast (pod), serverless-chatbot (bot)
serverless-shopping-cart (cart), refarch-fileprocessing (file)
finding-missing-persons-using-rekognition (rek), ddns

L OJ

Evaluation

/TNF=7SITU
Key improvements in Azure trace:
= OpenWhisk = Paguru 100%
846%"' g300k T T 4 90.1%] %
)) i I Tnfrequent (SR— |
Alleviate most functions’ cold £ 200 iddle £ 68.3% 1
startups, 73.4% of functions no S S o |
'® 100k {frequent = i —— OpenWhisk
longer need cold startups 5 :
41kpfr--—-—-—--—--== 50] | —— Pagurus
00 10000 20000 30000 40000 1 é 20 40 60
2 Function ID Cold Startup
0 5= (a) Cumulative cold startups (b) Frequencies of cold startups
Reduce cold startup response 10 Lo
latency to 16ms if it need o Pagurus . | ., + + .- e OpenWhisk .
.. 8 * e .;- ..:.. . . <3 : Y : .:-‘.:4
additional packages T PR P

p95atency—

Lower 95%-ile latency, especially
for mid-popular functions

penWhisk End-to-End Latencies

Pagurus End-to-End Latencies (s)

Function ID

(Normalized to Pagurus)

Introduction & Background

Motivation

R i Y
e T

Rationale & Design
Evaluation

Conclusion

Pagurus

e Y

\f \\q—' — 78

Conclusion
munl

Summary:

* Resource-friendly and security-ensured Zygote design.
* Shared domain and privilege domain.
* Replacing idle containers as Zygote containers for inter-function sharing.
* Reusing others’ Zygote containers to alleviate cold startups.
 SF-WRS based Zygote arrangement and scheduling.

* Calculate cosine distance as similarity to improve sharing efficiency

Another related track presentation:

RunD: A Lightweight Secure Container Runtime for High-density Deployment and High-concurrency Startup in

Al

Serverless Computing Introduces how to enable high-density and high-concurrency startup

Thanks!
Q&A

® Zijun Li, Izjzx1122 @sjtu.edu.cn;
Linsong Guo, gls1196@sjtu.edu.cn;

Quan Chen, chen-quan@cs.sjtu.edu.cn;

Jiagan Chen, chengjiagan@sjtu.edu.cn;

Chuhao Xu, barrin@sjtu.edu.cn;

Deze Zeng, deze@cug.edu.cn;

Zhuo Song, songzhuo.sz@alibaba-inc.com;

Tao Ma, boyu.mt@alibaba-inc.com;

1

Yong Yang, zhiche.yy@alibaba-inc.com;

PO

Chao Lj, lichao@cs.sjtu.edu.cn;

Minyi Guo, guo-my@cs.sjtu.edu.cn;

mailto:lzjzx1122@sjtu.edu.cn
mailto:gls1196@sjtu.edu.cn
mailto:chen-quan@cs.sjtu.edu.cn
mailto:chengjiagan@sjtu.edu.cn
mailto:guo-my@cs.sjtu.edu.cn

