
Emerging Parallel

Computing Center

RunD: A Lightweight Secure Container Runtime for
High-density Deployment and High-concurrency

Startup in Serverless Computing

Zijun Li , Jiagan Cheng, and Quan Chen, Shanghai Jiao Tong University;
Eryu Guan, Zizheng Bian, Yi Tao, Bin Zha, Qiang Wang, and Weidong Han, Alibaba Group;

Minyi Guo, Shanghai Jiao Tong University

EPCC

USENIX ATC 2022

2

Introduction & Background

RunD

• Definition of serverless (FaaS).

• Challenges of multi-tenants in serverless.

Introduction & Background

What is Serverless?

Berkerly’s View: “Serverless = FaaS (Function-as-a-Service) + BaaS (Backend-as-a-Service)”

FaaS system

request

results

BaaS services

Interact

Introduction & Background

• Normal containers (like runc, LXC).

• Based on namespace, cgroups

• Share Host kernel

How to guarantee the security with multi-tenants?

• Secure containers (like FireCracker, Kata Containers).

• Hypervisor-based virtualization

• Need to load guest kernel

Weak isolation

Low overhead

Strong isolation

Low overhead

Introduction & Background

Characteristics in Serverless computing

• Most functions with small container specification

E.g., 47% of lambda functions -> 128MB

• Actual memory usage is much smaller

E.g., 90% of Azure applications < 400MB

• Multiple function invocations may arrival in a short time

E.g., 200+ container-launch requests within 1s.

• Thousands of containers

E.g., a node with 256GB -> max 256*1024/128 = 2048 containers

High-concurrency
startup

High-density
deployment

Two requirements

Basic guarantee

Low response
latency

Introduction & Background

What’s the limitation of using Secure Containers in Serverless?

• Observation in high-concurrency scenario (>100-way)

• Distinct performance degradation of creating containers (10s)

• High CPU time and scheduling overhead

• Observation in high-density scenario (>1000 containers)

• MicroVM components occupies most of memory space

• Degradation of containers’ runtime performance (1.5x slower)

Current Secure Containers have concurrency and density bottlenecks!

7

• What are the bottlenecks of serverless?

• Where do these bottlenecks come from?

RunD

Introduction & Background

Motivation

The rootfs mounting for density/concurrency requirements:

• Virtio-blk (based on block devices).

good performance of rand/seq read/wirte.

time-consuming of preparing LVs in high-concurrency

double page cache in high-density

• Virtio-fs (based on filesystem sharing).

good performance of rand/seq read except write

enable sharing page cache

daemon-per-container introducing high CPU overhead in high-density

Motivation

The current secure container fails to discriminate between serverless
platforms and traditional infrastructure-as-a-service environments.

Memory footprint of MicroVM for density requirements.

• GuestOS, struct page, shimv2, agent, …

Motivation

the memory overheads of a
128MB container are 94MB
and 168MB with Kata-
FireCracker and Kata-qemu

the per-microVM memory overhead reduce
to 145MB and 71MB across 1000+ VMs.
The overhead is still too large for a container
with only 128MB memory specification

Serialized cgroups operations for concurrency requirements.

Motivation

• 100+ clients commit cgroups operations

• 1000+ cgroups operations per second

• 10000+ cgroups maintained in host

（1）Mutex locks serialize the operations of cgroups.

（2）Spinner cgroups experience the optimistic spinning.

（3）Failure to acquire the lock will drag down tail latencies.

11

• Lightweight Serverless Runtime - RunD

• Read-write splitting rootfs

• Condensed kernel and pre-pateched image

• Lightweight cgroups with cgroup pool

RunD

Introduction & Background

Motivation

Methodology & Design

Lightweight serverless runtime - RunD

Guest-to-host
solutions

Customized
for Serverless

Kata-based
Architecture

Rewritten
by rust

Production
-verified

MicroVM-
level isolation Specialized

Kernel for Pod

High-density
deployment

High-concurrency
startup

Single process
per instance

Methodology & Design

Methodology & Design

Lightweight serverless runtime - RunD

• Step 1: containerd -> RunD runtime

• Step 2: runc-container rootfs (ro and rw) -> VMM.

• Step 3: MicroVM template -> sandbox.

• Step 4: lightweight cgroup -> attached to sandbox.

Guest-to-Host

optimizations

• User-provided images are read-only for OS

• read-only layer is stored in the host and shared

• Can be prepared using overlay snapshotter

• Read-only part is Implemented by virtio-fs

• User-generated data does not need to be persisted

• Leveraging reflink copy to build CoW storage.

• Do not persist temporary data to disk.

• Volatile writable layer is implemented by virtio-blk.

Efficient container rootfs mapping leveraging serverless features

Methodology & Design

• Condense the guest kernel to build serverless-customized kernel

• Only retain features required in serverless context

• Without runtime performance degradation

• Generate a pre-patched kernel image for template startup

• Re-organizing text/data segments.

• Avoid self-modifying code.

Condensed guest kernel and pre-patched image

Reduce kernel size

improve sharable part

Methodology & Design

• The lightweight cgroup aggregates all subsys into one single dedicated one.

• “cgroup rename”, as a special case, does not need any global lock.

• Pre-create and maintain lightweight cgroups in a pool.

Lightweight cgroup and cgroup pool

Methodology & Design

17

RunD

Introduction & Background

Methodology & Design

Evaluation

Motivation

Evaluation

Evaluation setups:

• Baselines:

Kata-qemu, Kata-FireCracker, and Kata-template.

• Software and hardware setup:

• Measurement:

create pod sandboxs without containers inside, through crictl

smem to collect memory usage

Evaluation

Key improvements:

Reduced cold startup latency
for a single sandbox

Avg 88ms

launch 200 sandboxes
simultaneously within 1s, with minor

fluctuation and CPU overhead.

Max 200/s

Evaluation

The memory overhead is less than
20MB per sandbox with RunD.

20MB-

deploy over 2,500 sandboxes of 128MB
memory specification on the node with

384GB memory

2500density

Key improvements:

Evaluation

In-production usage for serverless:

High-concurrency
startup

High-density
deployment

Two requirements

Basic guarantee

Low response
latency

22

RunD

Introduction & Background

Rationale & Design

Open-Source

Evaluation

Motivation

RunD, developed by OpenAnolis Community,
will be open-sourced in the Kata Container Community in October.

RunD guest-to-host solution will drive Kata Container to upgrade
from previous version 2.x to version 3.0.

RunD X

RunD Open-source

[1] OpenAnolis Community: https://openanolis.cn/?lang=en

[2] Kata Container: https://github.com/kata-containers/kata-containers

https://openanolis.cn/?lang=en
https://github.com/kata-containers/kata-containers

Stage1 Stage2 Stage3

2022.07.25
Kata 3.0.0-alpha0

2022.10.10
Kata 3.0.0-release

Planning

Kata version
number

Expected release date

3.0.0-alpha0 2022-07-25

3.0.0-alpha1 2022-08-15

3.0.0-alpha2 2022-08-29

3.0.0-rc0 2022-09-12

3.0.0-rc1 2022-09-26

3.0.0-release 2022-10-10

Class Sub-Class Development Stage

service

task service Stage 1

extend service Stage 3

image service Stage 3

runtime handler

Virt-Container Stage 1

Wasm-Container Stage 3

Linux-Container Stage 3

Endpoint

Veth Endpoint Stage 1

Physical Endpoint Stage 2

Tap Endpoint Stage 2

Tuntap Endpoint Stage 2

IPVlan Endpoint Stage 3

MacVlan Endpoint Stage 3

MacVtap Endpoint Stage 3

VhostUserEndpoint Stage 3

Network Interworking Model

Tc filter Stage 1

Route Stage 1

MacVtap Stage 3

Storage
virtiofs Stage 1

nydus Stage 2

hypervisor

Dragonball Stage 1

QEMU Stage 2

Acrn Stage 3

CloudHypervisor Stage 3

Firecracker Stage 3

RunD (Kata 3.0) Release Plan

25

RunD

Introduction & Background

Rationale & Design

Conclusion

Evaluation

Motivation

Open-Source

Conclusion

Summary:

• Read/Write splitting based rootfs mounting.

• Leveraging the read-only and non-persistence features.

• Condensed kernel and Pre-patched image with template.

• Reduce the kernel size and improve the sharable part.

• Lightweight cgroup and cgroup pool.

• aggregates all subsys into one single dedicated lightweight one, and use “cgroup

rename” to avoid serial operations.

Our next track presentation:

Help Rather Than Recycle: Alleviating Cold Startup in Serverless Computing Through Inter-Function Container Sharing

Proposes to accelerate time-consuming container specialization if it needs cold startup

27RunD

Thanks!
Q&A

Zijun Li, lzjzx1122@sjtu.edu.cn;

Jiagan Cheng, chengjiagan@sjtu.edu.cn;

Quan Chen, chen-quan@cs.sjtu.edu.cn;

Eryu Guan, eguan@linux.alibaba.com;

Zizheng Bian, zizheng.bian@linux.alibaba.com;

Yi Tao, escape@linux.alibaba.com;

Bin Zha, zhabin.zb@alibaba-inc.com;

Qiang Wang, qw.hust@gmail.com;

Weidong Han, shaokang.hwd@alibaba-inc.com;

Minyi Guo, guo-my@cs.sjtu.edu.cn;

mailto:lzjzx1122@sjtu.edu.cn
mailto:chengjiagan@sjtu.edu.cn
mailto:chen-quan@cs.sjtu.edu.cn
mailto:escape@linux.alibaba.com

