ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

Epiniion Epiiae Ep i USEN IX ATC 2022

RunD: A Lightweight Secure Container Runtime for
High-density Deployment and High-concurrency
Startup in Serverless Computing

Zijun Li®, Jiagan Cheng, and Quan Chen, Shanghai Jiao Tong University;

Eryu Guan, Zizheng Bian, Yi Tao, Bin Zha, Qiang Wang, and Weidong Han, Alibaba Group;
Minyi Guo, Shanghai Jiao Tong University

)
Alibaba Cloud

Introduction & Background

l

B

e Definition of serverless (FaaS).

e Challenges of multi-tenants in serverless.

PSS) i il o A i

e

RunD

Introduction & Background =

AN A
S -
v NN O l)

What is Serverless?

Berkerly’s View: “Serverless = Faa$S (Function-as-a-Service) + Baa$ (Backend-as-a-Service)”

= mm o E— oy,

/ \
p————— - N | -'- Queue | |
ﬁ A ‘ A -\ | [0 Service | |
. | |
> B |
| @ 7 DevOps
I I I . tool |
: | Interact |
I I 6-?-6 Trigger |
! O = |
request : ! I E\ Data | |
: I AZ‘ g I | ®© Cache | |
) results |\ ;: ’I : Dsiﬁzzze :
—————— - ‘ /
FaaS system S=————-

Baa$s services

Introduction & Background =
/7 1V \T=TSJTU

How to guarantee the security with multi-tenants?

* Normal containers (like runc, LXC).

* Based on namespace, cgroups X Weak isolation

* Share Host kernel Vv Low overhead \’}
\/

* Secure containers (like FireCracker, Kata Containers).

. S OFirecracker
* Hypervisor-based virtualization v/ Strong isolation

* Need to load guest kernel X Low overhead @ katacontainers

Introduction & Background

Characteristics in Serverless computing

Most functions with small container specification

E.q., 47% of lambda functions -> 128MB

Actual memory usage is much smaller

E.q., 90% of Azure applications < 400MB

Multiple function invocations may arrival in a short time

E.q., 200+ container-launch requests within 1s.

Thousands of containers

E.q., a node with 256GB -> max 256*1024/128 = 2048 containers

Basic guarantee

latency

| Low response |

Two requirements

High-concurrency
startup

High-density
deployment

Introduction & Background =
/A INT=TsITUl I

What’s the limitation of using Secure Containers in Serverless?

* Observation in high-concurrency scenario (>100-way)
* Distinct performance degradation of creating containers (10s)
* High CPU time and scheduling overhead

* Observation in high-density scenario (>1000 containers)
* MicroVM components occupies most of memory space

* Degradation of containers’ runtime performance (1.5x slower)

. | Current Secure Containers have concurrency and density bottlenecks! :

Introduction & Background

l

B

Motivation

PSS) i il o A i

e What are the bottlenecks of serverless?

e

e Where do these bottlenecks come from?

RunD

Motivation =
/INF=TSITUl 1L

The rootfs mounting for density/concurrency requirements:
* Virtio-blk (based on block devices).

good performance of rand/seq read/wirte.
time-consuming of preparing LVs in high-concurrency
double page cache in high-density

* Virtio-fs (based on filesystem sharing).

good performance of rand/seq read except write
enable sharing page cache

daemon-per-container introducing high CPU overhead in high-density

i

i The current secure container fails to discriminate between serverless
I [d [d [[4 [4
' platforms and traditional infrastructure-as-a-service environments.
|
L.

Motivation

Memory footprint of MicroVM for density requirements.

* GuestOS, struct page, shimv2, agent, ...

= 300
S —* kata-gemu
o kata-FireCracker
o 204
% * e
0 154 —X
(@)
E,lOC
2 50
[
= (- - - - - -

12g]| <56 512 102420454096 1 10 109 500 Ik [.5k

(a) Impact of specification (solo) (b) Impact of density (128MB)

the per-microVM memory overhead reduce
to 145MB and 71MB across 1000+ VMs.

the memory overheads of a i
|
|
E The overhead is still too large for a container
|
|
|

|
]
|
128MB container are 94MB i
and 168MB with Kata- E
]
|
]

FireCracker and Kata-gemu with only 128MB memory specification

Motivation

Serialized cgroups operations for concurrency requirements.

— 10 threads — 100 threads
— 50 threads — 200 threads

1.of——— |
. . . A
* 100+ clients commit cgroups operations 0.8 -
-— jul]
. L 0.6 I == - u
* 1000+ cgroups operations per second S04 W B E—
0.2 Function stacks
* 10000+ cgroups maintained in host 0.0l — - s Timeline
The latency of each client(s) -
(a) Latency distribution (b) The flame graph of Perf

(1) Mutex locks serialize the operations of cgroups.

(3) Failure to acquire the lock will drag down tail latencies.

i (2) Spinner cgroups experience the optimistic spinning. i

Introduction & Background

Motivation

Mmm N\ S
| A A A e
| O A s i B

Methodology & Design

* Lightweight Serverless Runtime - RunD
e Read-write splitting rootfs
* Condensed kernel and pre-pateched image

* Lightweight cgroups with cgroup pool

Methodology & Design

/\r"\j;z%ﬂf

Lightweight serverless runtime - RunD

r i
1 I
I I
I : : !
: Guest-to-host High-density]
i solutions deployment :

|
I I
I . . !
! Single process Kata-based Production]
i per instance Architecture -verified I

|
| |
: Customized] l
! High-concurrency |
! for Serverless :
| startup !
I]
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Rewritten
MicroVM- by rust

level isolation Specialized
Kernel for Pod

Methodology & Design

yINF=zsutull 1L

Lightweight serverless runtime - RunD

MicroVM :
Template Condensed kernel pre-patched image
~_mmap_—~ ~_mmap_~

cgroup

MicroVM MicroVM
L “agentust|
s

Y

@@ | guest kernel | | guest kernel |

A A A ::::::

v ro rw ro rw o
overlayfs virtio-fs | | virtio-blk virtio-fs | | virtio-blk '
A RunD A RunD
A A
read/write splitting Lightweight cgroup

* Step 1: containerd -> RunD runtime

* Step 2: runc-container rootfs (ro and rw) -> VMM. O
P fs() Guest-to-Host

* Step 3: MicroVM template -> sandbox. >

. . optimizations
* Step 4: lightweight cgroup -> attached to sandbox. _

Methodology & Design

Efficient container rootfs mapping leveraging serverless features

User-provided images are read-only for OS

User-generated data does not need to be persisted

read-only layer is stored in the host and shared

Can be prepared using overlay snapshotter

Read-only part is Implemented by virtio-fs

Guest OS

Overlayfs
|Virtio-fs (ro) |<— T—
ﬂ -

Container

: rootfs (rw)

v
|\ﬁ|1io-fs dn'ver| ‘ Virtio-blk driver ‘

L)
Y

Guest kernel

Virtio-fs device| @ Virtio-blk device

[)

A

Open-but-unlink
VMM 1

/IN\T=TSJTUll 1L

VMMs

0s

kemel

Leveraging reflink copy to build CoW storage.
Do not persist temporary data to disk.

Volatile writable layer is implemented by virtio-blk.

 J
Built-in

Storage Image ™

Reflink
copy

Overlay Snapshotter

Storage Image
Template

_

Methodology & Design -

aaN—<«ntif

Condensed guest kernel and pre-patched image

* Condense the guest kernel to build serverless-customized kernel

* Only retain features required in serverless context .

Without runtime performance degradation

Reduce kernel size

-8

improve sharable part

* Generate a pre-patched kernel image for template startup

* Re-organizing text/data segments.

* Avoid self-modifying code.

Methodology & Design A

\‘\\. = - (T T
| _k:)_.v

Lightweight cgroup and cgroup pool

Cgroups creation Fn create Fn start

¢¢¢ ¢£ &_’A Y join__

Cgroup subsys) WS rename attach A
L — Jg M N A
L3 Jointcontroller | [dle § o Busy ¥ A

Lightweight Cgroup — Lightweight Cgroup Pool

* The lightweight cgroup aggregates all subsys into one single dedicated one.
* “cgroup rename”, as a special case, does not need any global lock.

* Pre-create and maintain lightweight cgroups in a pool.

Introduction & Background

Motivation

OO OO N,
R hpdtoeeeet i §l,

Methodology & Design

Evaluation

RunD

Evaluation

Evaluation setups:

* PBaselines:

Kata-gemu, Kata-FireCracker, and Kata-template.

* Software and hardware setup:

Table 1: Experiment setup in our evaluation.

Configuration

Hardware

CPU: 104 vCPUs (Intel Xeon Platinum 8269CY)
Memory: 384GB, two SSD drives: 100GB, 500GB

Software

OS: CentOS7, kernel: Linux kernel 4.19.91

Container

kata-gemu containerd 1.3.10, kata 1.12.1
kata-FC containerd 1.5.8, kata 2.2.3
kata-template containerd 1.3.10, kata 1.12.1
RunD containerd 1.3.10

* Measurement:

create pod sandboxs without containers inside, through crictl

smem to collect memory usage

— —

L OJ

UJ

Evaluation

S IM\F=zsotul 1L

Key improvements:

Avg 881'5

Reduced cold startup latency
for a single sandbox

vax 20055

launch 200 sandboxes
simultaneously within 1s, with minor
fluctuation and CPU overhead.

B (o)) co
o o o

Startup latency (s)
N
o

1.00

| = kata-gemu

-= kata-template
-= kata-FC
| -= RunD

1 1o 20 S0 log 209 300 400

-0~
1

1o 20 50 1og 209 300 400

(a) End-to-end startup latency with different concurrency

— Kata-gemu — Kata-FC
— Kata-template =— RunD

10 15 20
Startup latency (s)

(b) Latency distribution

3.0

B 251

()]
€2.0
=

S 1.5

tal CP
=
o

L20.5

0.0

B 10-concurrency
50-concurrency
100-concurrency

mm 200-concurrency

B 400-concurrency

||
Kata- Kata- Kata- RunD
gemutemplate FC

(c) CPU time

Evaluation

ARN—¢ ’U—ul

Key improvements:

20ve-

The memory overhead is less than
20MB per sandbox with RunD.

2500ensity

deploy over 2,500 sandboxes of 128 MB
memory specification on the node with
384GB memory

@ 250
= mm Kata-gemu Kata-FC
5 200 Kata-template RunD
©
]
£ 150
¢
© 100
>
o
= 50
s
0 128MB 256MB 512MB 1024MB 2048MB 4096MB
)
Z 500 - kata-gemu < kata-template < kata-FC - RunD
-
[§v] \
@ 1507 52 3% % X
<
‘5 \
> 100 ¢
(@] x\z
b | 7
s 50
& Y * % X
v ol : : : : :
= 1 10 100 500 1000 2000

Evaluation

aaN—utll
In-production usage for serverless:
..200
o — Node-1 — Node-3 — Node-5 St !
£ 100/ - Moder T Hodet k_ sl . Basic guarantee
S o dus TR VRO BSF SISO W W10 0 PO so0m | Low response
| ,,,,,,,,,,,,,,,,, 1000 i i Iatency i
_______ ,l.|| || J | ‘ | l S Y | A Y AR P E v

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
Timeline (min)

Two requirements

High-concurrency
startup

2000 g — Node-1 — Node-3 — Node-5 -
— Node-2 — Node-4 — Node-6

High-density
deployment

u
o

o]
wu
Concurrency

o

18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00
Timeline (min)

Introduction & Background
Motivation

Rationale & Design
Evaluation

Open-Source

RunD

.u‘«\wsum\“\gv
lm\m\n\m\m\u

P s it ity i] |,

e

|
iy

RunD Open-source
P / *-’““‘\ﬁ”"f‘z&rui

RunD X OpenAnolis) @
kata

containers

RunD, developed by OpenAnolis Community,
will be open-sourced in the Kata Container Community in October.

RunD guest-to-host solution will drive Kata Container to upgrade
from previous version 2.x to version 3.0.

[1] OpenAnolis Community: https://openanolis.cn/?lang=en

[2] Kata Container: https://qithub.com/kata-containers/kata-containers

https://openanolis.cn/?lang=en
https://github.com/kata-containers/kata-containers

RunD (Kata 3.0) Release Plan .

S IM\F=zsotul 1L

Class Sub-Class Development Stage
@ 0 o service extend service Stage 3
image service Stage 3
runtime handler Wasm-Container Stage 3
2022.07.25 2022.10.10 Plannin Linux-Container Stage 3
Keta 300-3iphad Keta 3.00-relesse ’ g st
Physical Endpoint Stage 2

- Tap Endpoi S 2

Kata version Expected release date - o
Endpoint Tuntap Endpoint Stage 2
num ber IPVlan Endpoint Stage 3

3_0.0—a|pha0 2022_07_25 MacVlan Endpoint Stage 3

MacVtap Endpoint Stage 3

3.0.0—a|pha1 2022_08_1 5 VhostUserEndpoint Stage 3

3.0.0-alpha2 2022-08-29 MacVtap Stage 3

itiofs stgel
3.0.0-rcO 2022-09-12 orage nydus Stage 2

3.0.0-rcT 2022-09-26 QEMU Stage 2

hypervisor Acrn Stage 3

3.0.0-release 2022-10-10 CloudHypervisor Stage 3

Firecracker Stage 3

Introduction & Background

A e R A it 4 3 3 2

R N N TAT YO

Motivation AR

S

Rationale & Design
Evaluation
Open-Source

Conclusion

RunD

P s it ity i] |,

¥

Conclusion —

aaN—<lll

Summary:

* Read/Write splitting based rootfs mounting.
* Leveraging the read-only and non-persistence features.
* Condensed kernel and Pre-patched image with template.
* Reduce the kernel size and improve the sharable part.
* Lightweight cgroup and cgroup pool.
* aggregates all subsys into one single dedicated lightweight one, and use “cgroup

rename” to avoid serial operations.

e e e e e e e e e s e s e e ke e s n s e s e s ke h e s h s e 4 s e s h e ke ke ke 4 s s ke sk e s et 4 st — s 1

\J

Our next track presentation: 4
'y

Help Rather Than Recycle: Alleviating Cold Startup in Serverless Computing Through Inter-Function Container Sharing

Proposes to accelerate time-consuming container specialization if it needs cold startup

L o ¥

Thanks!
Q&A

® Zijun Li, zjzx1122 @sjtu.edu.cn;

Jiagan Cheng, chengjiagan@sjtu.edu.cn;

Quan Chen, chen-quan@cs.sjtu.edu.cn;

Eryu Guan, eguan@linux.alibaba.com;

Zizheng Bian, zizheng.bian@linux.alibaba.com;

Yi Tao, escape@linux.alibaba.com;

Bin Zha, zhabin.zb@alibaba-inc.com;

1

Qiang Wang, gw.hust@gmail.com;

PO

Weidong Han, shaokang.hwd@alibaba-inc.com;

Minyi Guo, guo-my@cs.sjtu.edu.cn;

mailto:lzjzx1122@sjtu.edu.cn
mailto:chengjiagan@sjtu.edu.cn
mailto:chen-quan@cs.sjtu.edu.cn
mailto:escape@linux.alibaba.com

