
1

Xingda Wei*, Fangming Lu, Rong Chen* and Haibo Chen

The institute of parallel and distributed systems (IPADS)

Shanghai Jiaotong university

* Shanghai AI Laboratory

KRCore: A Microsecond-scale
RDMA Control Plane for Elastic Computing

2

A high-performance user-space networking feature

n With high bandwidth (up to 400Gbps)

n Low latency (down to 2us)

Remote Direct Memory Access (RDMA)

RDMA and its primitives

n One-sided: RNIC+ read/writes memory bypassing CPU

n Two-sided: a messaging primitive (send/recv)

+ RNIC: RDMA-capable Network Card

Improve the performance of distributed systems

n E.g., key-value stores (RACE), transactions (FaRM-v2), etc.
0

30

60

90

120

RACE

YCSB-C

FaRM-v2

TPC-C

T
im

e
(𝜇

s)

5us

100us

+ FaRM-v2: Fast general distributed transactions with opacity@SIGMOD’19

+ RACE: One-sided rdma-conscious extendible hashing for disaggregated memory@ATC’21

3

To use RDMA, user must create RCQP (control plane)

n Reliable connected (RC) queue pair (QP)

n Creating and connecting RCQPs may take a long time

Problem: creating RDMA connections is slow

QP

Control (15ms) Data (2us)

One-sided
requests

1

30

900

27000

Data Control

T
im

e
(𝜇

s)

2us

15ms

4

The creation has three parts
① Loading the driver context at the user-space

Problem: creating RDMA connections is slow

QP

Data (2us)

One-sided
requests

Control (15ms)

1

30

900

27000

Data Control

T
im

e
(𝜇

s)

2us

15ms

10ms

5

The creation has three parts
① Loading the driver context at the user-space

② Creating and configuring the hardware queues

Problem: creating RDMA connections is slow

QP

Data (2us)

One-sided
requests

Control (15ms)

1

30

900

27000

Data Control

T
im

e
(𝜇

s)

2us

15ms

4ms

6

The creation has three parts
① Loading the driver context at the user-space

② Creating and configuring the hardware queues

③ Exchange the connection information with remote end

Problem: creating RDMA connections is slow

QP

Data (2us)

One-sided
requests

Control (15ms)

1

30

900

27000

Data Control

T
im

e
(𝜇

s)

2us

15ms

1ms

7

The creation has three parts
① Loading the driver context at the user-space

② Creating and configuring the hardware queues

③ Exchange the connection information with remote end

Problem: creating RDMA connections is slow

QP

Data (2us)

One-sided
requests

Control (15ms)

Challenging to reduce due to
configuring and creating the

hardware resources

1

30

900

27000

Data Control

T
im

e
(𝜇

s)

2us

15ms

8

Traditional RDMA-enabled applications are not affected

n E.g., RDMA-enabled databases, filesystems, scientific applications

n Because they run a sufficient long time

No problem for traditional applications

What about new applications that require elasticity?

9

Example: RDMA-enabled disaggregated key-value stores (KVS)

n Nodes are separated:

n Memory nodes. store the KV-pairs

n Compute nodes. use RDMA to read the KV-pairs from memory nodes

Impact the performance of elastic applications

Compute Memory

RDMA

10

Benefits: handle loads in a resource efficient way elastically

n If the load changes, we can dynamically add/remove nodes to cope with them

Impact the performance of elastic applications

Compute Memory

RDMA

However, new nodes need new RCQPs to the memory nodes

n Requests handled by the new nodes inevitably face the high tail latency

1

30

900

27000

T
im

e
(𝜇

s)

5us

15ms

RACE YCSB-C Control
+ RACE is a state-of-the-art RDMA-enabled elastic KV

11

Goal & this work:

reducing RDMA connection time from ms to us
and compatible to existing RDMA hardware & software

12

QP
Pool

Cache RCQPs in a connection pool

n The QPs in the pool can be reused by future applications with no connection cost

Basic idea: connection pooling & reusing

13

QP
Pool

Cache RCQPs in a connection pool

n The QPs in the pool can be reused by future applications with no connection cost

Basic idea: connection pooling & reusing

QP

Control (15ms) Data (2us)

One-sided
requests

App#1

QP

14

QP
Pool

Cache RCQPs in a connection pool

n The QPs in the pool can be reused by future applications with no connection cost

Basic idea: connection pooling & reusing

QP

Control (15ms) Data (2us)

One-sided
requests

App#1

QP

App#2

QP

One-sided
requests

Example: App#2 can reuse App#1’s QP without connection

Data (2us)

15

Different process/container cannot be shared the same QP

n RDMA is in default used in user-space (not designed for share among applications)

n User-space QP has a complex data structures (both at the user-space and in kernel)

n Further, cannot reduce the driver loading costs

Challenge#1. User-space QPs cannot be shared

App#1 App#2

QP

QP

QP Pool

ke
rn
el

U
se
r-
sp
ac
eibv_context

sq_buf
sq_buf
...

ib_pd
mlx5_ib_qp
...

16

Kernel-space RDMA driver also support full-fledged RDMA

n Provide a near-same functionality as user-space QPs

n E.g., ibv_qp (user-space RDMA QP) has an equivalent ib_qp in the kernel

Solution #1. share QPs in a kernel-space QP pool

17

Kernel-space RDMA driver also support full-fledged RDMA

n Provide a near-same functionality as user-space QPs

n E.g., ibv_qp (user-space RDMA QP) has an equivalent ib_qp in the kernel

Solution #1. share QPs in a kernel-space QP pool

Idea: put the qp pool in the kernel

n Therefore, different applications can share the same QP

n i.e., we translate the API to the kernel-space QP

App#1 App#2

Kernel-space QP pool

QP#0 QP#1 QP#2

ib_post_send

ibv_post_send

System call

18

Kernel-space RDMA driver also support full-fledged RDMA

n Provide a near-same functionality as user-space QPs

n E.g., ibv_qp (user-space RDMA QP) has an equivalent ib_qp in the kernel

Solution #1. share QPs in a kernel-space QP pool

Further, a kernel-space solution avoid user-space driver loading

n i.e., kernel can pre-load all the driver context during boot time

19

RCQP is a one-to-one mapping

n Needs a dedicated QP to connect to a different server

n Also, different CPU may have dedicated QP for the best performance [1]

Challenge #2. Massive QPs cached in the pool

Therefore, we need M X N QPs cached in the pool

n M: the number of machines in the cluster

n N: the number of cores on the machine

[1] Fast remote memory@NSDI’14

…

N cores

M machines

QP0 QP0 QP0 QP0…

…Causes GBs of memory on
modern clusters w/ >10K nodes

20

Opportunity: Dynamically connected transport (DCT)

A less-used (but widely support) advance RDMA transport

n E.g., NVIDIA supports DCT through NICs later than Connect-IB (released in 2014)

21

Opportunity: Dynamically connected transport (DCT)

A less-used (but widely support) advance RDMA transport

n E.g., NVIDIA supports DCT through NICs later than Connect-IB (released in 2014)

A DCQP can connect to multiple nodes w/o user connection

n The hardware can piggyback the connection with request and is extremely fast

RCQP

Control (15ms) Data (2us)

One-sided
requests

DCQP

Control + Data (3us)

One-sided
requests

22

Solution #2. Retrofit DCT as the shared connection

i.e., the server QP pool use DCQP as the default connection

n No need for a separate RCQP for each machine in the cluster

App#1 App#2

Kernel-space QP pool

ib_post_send

ibv_post_send

System call DCQP

Problem: DCT metadata discovery

n To communicate with a specific host, the server must first create a DC Target, and hand-off

the metadata associated with the target to the client

23

Solution #2. Retrofit DCT as the shared connection

Problem: DCT metadata discovery

n To communicate with a specific host, the server must first create a DC Target, and hand-off

the metadata associated with the target to the client

Naïve solution

n Use unreliable-datagram (UD)-based RPC for the discovery

Drawbacks of RPC in our scenarios

① Each server must use dedicated polling threads to handle the DCT discovery requests

② RPC’s latency can vibrate (to 10ms) due to queuing at the server-side

UD supports connectionless
send/recv

24

Our design: MetaServer

We dedicate few nodes in the cluster to store the DCT metadata

n Possible: DCT metadata is extremely small (12B)

…

MS
Server addr DCT meta

0d:9a03:... 73|4096

...

...

25

A separate architecture allows query metadata with one-sided RDMA

n i.e., implement the MetaServer in an RDMA-enabled key-value store

n Each machine maintains QPs connected to nearby MetaServers

Our design: MetaServer

We dedicate few nodes in the cluster to store the DCT metadata

n Possible: DCT metadata is extremely small (12B)

…

MS
Server addr DCT meta

0d:9a03:... 73|4096

...

...

DCQP

MS

Query + control + data (10us)

One-sided
requests

26

Challenge #3. Correct QP multiplexing

We let each DCQP in the pool to be shared by multiple applications

n Thus, each application can always choose a QP in the pool

App#1 App#2

Kernel-space QP pool

ib_post_send

ibv_post_send DCQP

QP QP

ibv_post_send

The shared QP is further virtualized to multiple user-space QP

n Provide the same semantic as RCQP to simplify development

27

Challenge #3. Correct QP multiplexing

We let each DCQP in the pool to be shared by multiple applications

n Thus, each application can always choose a QP in the pool

Problem: shared QPs can be corrupted by various reasons

n Worser, even applications correctly use the shared QP, the QP can be corrupted

n A corrupted QP will prevent progress (and requires re-connection)

28

We add additional checks to prevent QP corruptions

Behavior the same as a single QP, yet may use a shared QP

1. Malformed requests 2. Queue overflows 3. Completion dispatch

App#1 App#2

Kernel-space QP pool

ib_post_send

ibv_post_send DCQP

QP QP

ibv_post_send

How to achieve so? We add additional checks to each request:

c c

Things to check

29

Put it all together: KRCore

A networking library that provides us-scale RDMA connections

n On commodity RNICs that support DCT

n 1,500X faster than ibverbs (in connection latency)

We also apply other optimizations

n DCT metadata caching

n Dynamic switch between DCQP & RCQP

30

KRCore implementation

Implemented as a loadable kernel module

n 10,000LoC+ Rust code

n With a C-shim layer to translate RDMA request to systemcalls

Available on GitHub with continuously developments

n https: //github.com/SJTU-IPADS/krcore-artifacts

We are the first to port DCT to the kernel-space RDMA driver

n With ~250 LoC C code added to the mlnx-ofed-4.9 driver

31

Evaluations

Questions aim to answer

① How fast is KRCore’s control plane?

② What are the costs KRCore added to RDMA’s data plane?

③ Can KRCore benefit existing applications that require elasticity?

32

Evaluations setup

Evaluation setup

① A rack-scale cluster consists of 10 machines

② Each with one ConnectX-4 100Gbps RNIC

Comparing targets

① Verbs --- the de facto user-space library for using RDMA

② LITE[1] – kernel-space RDMA solution that use RCQP pool

[1] LITE Kernel RDMA Support for Datacenter Applications@SOSP’17

33

Control plane performance of KRCore

1

10

100

1000

10000

100000

1000000

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08C
o
nn

ec
ti
o
n

la
te

nc
y

(u
s)

Connection creation throughput

LITE

verbs

KRCore

Case #1

n Multiple client connecting to the same server

Skip user-space driver loading

Bottlenecked by creating
hardware queues

34

Control plane performance

1

10

100

1000

10000

100000

1000000

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08C
o
nn

ec
ti
o
n

la
te

nc
y

(u
s)

Connection creation throughput

LITE

verbs

KRCore

Case #1

n Multiple client connecting to the same server

Case #2

n Creating full-mesh connections

1

10

100

1000

10000

100000

1000000

10000000

1 40 79 118 157 196 235

C
o
nn

ec
ti
o
n

ti
m

e
(u

s)

Number of clients connected

35

Data plane performance

0

1

2

3

4

5

6

0.0E+00 2.0E+07 4.0E+07 6.0E+07

M
ed

ia
n

 la
te

nc
y

(u
s)

Throughput

LITE

verbs

KRCore

Workload: synchronous one-sided RDMA

n The client keeps sending one-sided RDMA READ to a server in a run-to-completion way

n Request payload: 8B

36

Data plane performance

0

1

2

3

4

5

6

0.0E+00 2.0E+07 4.0E+07 6.0E+07

M
ed

ia
n

 la
te

nc
y

(u
s)

Throughput

LITE

verbs

KRCore

Workload: synchronous one-sided RDMA

n The client keeps sending one-sided RDMA READ to a server in a run-to-completion way

n Request payload: 8B

System call latency (~1us)

37

Data plane performance

0

1

2

3

4

5

6

0.0E+00 2.0E+07 4.0E+07 6.0E+07

M
ed

ia
n

 la
te

nc
y

(u
s)

Throughput

LITE

verbs

KRCore

Workload: synchronous one-sided RDMA

n The client keeps sending one-sided RDMA READ to a server in a run-to-completion way

n Request payload: 8B

DCT has reconnection overhead

38

Accelerating disaggregated RDMA-enabled KVS

0

10

20

30

40

50

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

T
hr

o
ug

hp
ut

(M
o
p
s/

se
c)

Timeline (sec)

verbs

KRCore

LITE

Load spike

KRCore done

LITE done

verbs done

KRCore
switch to RCQP

Target: RACEHashing@ATC’21

39

Summary and discussion

A microsecond-scale RDMA control plane

n By retrofitting DCT with kernel-space RDMA connection pool

Limitation

n KRCore trades data path due to kernel interception & DCT overhead

n Thus, it does not suit all the application scenarios

40

Conclusion of KRCore

Thanks & QA

The first to provide a microsecond-scale RDMA control plane

n While compatible to existing RDMA hardware/software

Elastic application can benefit from KRCore with little data path costs

n E.g., RDMA for disaggregated key-value store, serverless computing

