SHANGHAI JIAO TONG UNIVERSITY

t% 1 IPADS

11V 5

KRCore: A Microsecond-scale
RDMA Control Plane for Elastic Computing

Xingda Wei*, Fangming Lu, Rong Chen* and Haibo Chen

The institute of parallel and distributed systems (IPADS)
Shanghai Jiaotong university

* Shanghai Al Laboratory

Remote Direct Memory Access (RDMA)

A high-performance user-space networking feature
B \With high bandwidth (up to 400Gbps)

B Low latency (down to 2us)

RDMA and its primitives |

B One-sided: RNIC* read/writes memory bypassing CPU 190

B Two-sided: a messaging primitive (send/recv) . 100us

60

Improve the performance of distributed systems

Time (us)

B E.g., key-value stores (RACE), transactions (FaRM-v2), etc. * ous

RACE FaRM=v"| o\

* RACE: One-sided rdma-conscious extendible hashing for disaggregated memory@ATC’21 5))
YCSB-C TPC= § /

* FaRM-v2: Fast general distributed transactions with opacity@SIGMOD’19
+ RNIC: RDMA—capable Network Card 2

Problem: creating RDMA connections is slow

To use RDMA, user must create RCQP (control plane)

B Reliable connected (RC) queue pair (QP)

B Creating and connecting RCQPs may take a long time

] -

L]

QP \ T
One-sided
requests

\

Control (15ms)

Data (2us)

Time (us)

27000

900

30

2US

Data

15ms

/| .
/ QA N\
Contre. |2))
N 74
3

Problem: creating RDMA connections is slow

The creation has three parts

D Loading the driver context at the user—space

27000
(] . __alfel= 2 900
VT s
o) ided £
ne-side i— 30
requests 2US

CI - \// 1 I

Data Contr[/ ?\f?'
Control (15ms) Data (2us)

Problem: creating RDMA connections is slow

The creation has three parts

@) Creating and configuring the hardware queues

27000 1oms
n
[. Bl QP 2 90
VT s
o) ided £
ne-side i— 30
requests 2US

[\ | -

Data Contrl |?))
Control (15ms) Data (2us) J7?)

Problem: creating RDMA connections is slow

The creation has three parts

D Loading the driver context at the user-space

@) Creating and configuring the hardware queues

©) Exchange the connection information with remote end

|D 27000 15ms
/T\ _ QP :% 900
\] =
O ided S
CI equest = 30
requests -
] \/ 1 .
Data Contr_ 7))
Control (15ms) Data (2us) \ 6/

Problem: creating RDMA connections is slow

. Challenging to reduce due to
The creation has three parts sontlsliing ene eresiiis) The

(D Loading the driver context at the user-space hardware resources

@) Creating and configuring the hardware queues

©) Exchange the connection information with remote end

27000 1oms
CI — e~ 2 900
\] :
One-sided £
ne-side = 0
requests Us
C/ R\
Data Contre_?))
Control (15ms) Data (2us) . 7

No problem for traditional applications

Traditional RDMA-enabled applications are not affected

B E.g.,, RDMA-enabled databases, filesystems, scientific applications

B Because they run a sufficient long time

What about new applications that require elasticity?

Impact the performance of elastic applications

Example: RDMA-enabled disaggregated key-value stores (KVS)

B Nodes are separated:
B Memory nodes. store the KV—pairs

B Compute nodes. use RDMA to read the KV-pairs from memory nodes

- -
- -

Compute Memory

Impact the performance of elastic applications

Benefits: handle loads in a resource efficient way elastically

B [f the load changes, we can dynamically add/remove nodes to cope with them

However, new nodes need new RCQPs to the memory nodes

B Requests handled by the new nodes inevitably face the high tail latency

l:l 27000 15ms
L LJ =
= 900
L :
- 0 & @ e
. 1N

Compute Memor R\
p ! RACE YCSB-C Contr. /)

+ RACE is a state—of-the—art RDMA—-enabled elastic KV 10

Goal & this work:

reducing RDMA connection time from ms to us

and compatible to existing RDMA hardware & software

Basic idea: connection pooling & reusing

Cache RCQPs in a connection pool

B The QPs in the pool can be reused by future applications with no connection cost

12

Basic idea: connection pooling & reusing

Cache RCQPs in a connection pool

B The QPs in the pool can be reused by future applications with no connection cost

Appi1 e

] — lamk

One-sided
requests

QP

Pool

- . \

Control (15ms) Data (2us)

Basic idea: connection pooling & reusing

Cache RCQPs in a connection pool

B The QPs in the pool can be reused by future applications with no connection cost

Example: App#2 can reuse App#1’s QP without connection

Appi1 e Appit2 e

Cl] el \ T g QP \ T
QP One-sided QP One-sided
Pool requests requests

. B \ o

L))
Control (15ms) Data (2us) Data (2us) 14

Challenge#1. User-space QPs cannot be shared

Different process/container cannot be shared the same QP

B RDMA is in default used in user-space (not designed for share among applications)
B User—-space QP has a complex data structures (both at the user—space and in kernel)

B Further, cannot reduce the driver loading costs

App#1 e Appi#2 e ibv_context 8
sq_buf 73
j QP sq_buf é
QP g >
ib pd 5
QP Pool mlx>_1b_qp gEg [// ‘

15

Solution #1. share QPs in a kernel-space QP pool

Kernel-space RDMA driver also support full-fledged RDMA

B Provide a near-same functionality as user—-space QPs

B E.g, ibv_gp (user-space RDMA QP) has an equivalent ib_gp in the kernel

16

Solution #1. share QPs in a kernel-space QP pool

Kernel-space RDMA driver also support full-fledged RDMA

B Provide a near-same functionality as user—-space QPs

B E.g, ibv_gp (user-space RDMA QP) has an equivalent ib_gp in the kernel

ldea: put the gp pool in the kernel

B Therefore, different applications can share the same QP

B i.e., we translate the API to the kernel-space QP

ibv_post_send /) Kernel-space QP pool

App#1 e Sy

| Q?\#O QP#1 QP#2

stem cal
\ > 1b_post_send

Solution #1. share QPs in a kernel-space QP pool

Kernel-space RDMA driver also support full-fledged RDMA

B Provide a near-same functionality as user—-space QPs

B E.g, ibv_gp (user-space RDMA QP) has an equivalent ib_gp in the kernel

Further, a kernel-space solution avoid user-space driver loading

B i.e., kernel can pre-load all the driver context during boot time

18

Challenge #2. Massive QPs cached in the pool

RCQP is a one-to—one mapping

B Needs a dedicated QP to connect to a different server

B Also, different CPU may have dedicated QP for the best performance [

Therefore, we need M X N QPs cached in the pool

B M: the number of machines in the cluster

. {11 ': N cores
B N: the number of cores on the machine Cl a QP., QP, QP, ... QP
0 0 0- 0

Causes GBs of memory on / / /

modern clusters w/ >10K nodes

NN
4 :\\1\.

a \\
M)
<)

2 /)

[Fast remote memory@NSDI’14 M machines 19

Opportunity: Dynamically connected transport (DCT)

A less—used (but widely support) advance RDMA transport
B E.g., NVIDIA supports DCT through NICs later than Connect-IB (released in 2014)

\ 20

Opportunity: Dynamically connected transport (DCT)

A less—used (but widely support) advance RDMA transport

B E.g., NVIDIA supports DCT through NICs later than Connect-IB (released in 2014)

A DCQP can connect to multiple nodes w/o user connection

B The hardware can piggyback the connection with request and is extremely fast

] -

L]]

Control (15ms)

B rRcapP i DCQP i
Or:e—sided (‘Sr:e—sided
requests requests
\/ Y
Data (2us) Control + Data (3us)

21

Solution #2. Retrofit DCT as the shared connection

i.e., the server QP pool use DCQP as the default connection

B No need for a separate RCQP for each machine in the cluster

Problem: DCT metadata discovery

B To communicate with a specific host, the server must first create a DC Target, and hand—off

the metadata associated with the target to the client

ibv_post_send /) Kernel-space QP pool

Appi#1 e Sy DCQP App#2 e o
C)
>

stem cal
A
ib post send

—>

\
Z

2

Solution #2. Retrofit DCT as the shared connection

Problem: DCT metadata discovery
B To communicate with a specific host, the server must first create a DC Target, and hand—off

the metadata associated with the target to the client

Naive solution ,
UD supports connectionless
B Use unreliable—-datagram (UD)-based RPC for the discovery REEleVA=(a%

Drawbacks of RPC in our scenarios

(D Each server must use dedicated polling threads to handle the DCT discovery requests

@ RPC’s latency can vibrate (to 10ms) due to queuing at the server—side ~

Our design: MetaServer

We dedicate few nodes in the cluster to store the DCT metadata

B Possible: DCT metadata is extremely small (12B)

Cl\ Server addr DCT meta

MS @d:9a03:...| 73|4096

CI’7‘ : :

24

Our design: MetaServer

We dedicate few nodes in the cluster to store the DCT metadata

B Possible: DCT metadata is extremely small (12B)

A separate architecture allows query metadata with one-sided RDMA

B ie., implement the MetaServer in an RDMA-enabled key—value store

B Each machine maintains QPs connected to nearby MetaServers

DCQP 11
Cl\ erver addr meta CI \ f

MS 0d:9a03:...| 734096
CI MS One-sided

/ req uests —

Query + control + data (10us)

Challenge #3. Correct QP multiplexing

We let each DCQP in the pool to be shared by multiple applications

B Thus, each application can always choose a QP in the pool

The shared QP is further virtualized to multiple user-space QP

B Provide the same semantic as RCQP to simplify development

le\ Kernel-space QP pool / Qf
ibv_post send i

bv_post_send
A DiQP A
Appit e -, ib_post_send App#2 e o
2

\
Z

6

Challenge #3. Correct QP multiplexing

We let each DCQP in the pool to be shared by multiple applications

B Thus, each application can always choose a QP in the pool
Problem: shared QPs can be corrupted by various reasons

B Worser, even applications correctly use the shared QP, the QP can be corrupted

B A corrupted QP will prevent progress (and requires re-connection)

27

We add additional checks to prevent QP corruptions

Behavior the same as a single QP, yet may use a shared QP

QP
A

ibv_post send

A
Appit1 e

How to achieve so? We

Kernel-space QP pool

QP
/ A
ibv_post send

DCQP A
A
@2 ib_post_send Appi#2 e

add additional checks to each request:

1. Malformed requests

2. Queue overflows

3. Completion dispatch

\

)

f
Things to check

)
28

. e
Put it all together: KRCor

y
n W

DCT
ommodity RNICs that support
B Onc

[[J [nS
Iso apply other optimizatio
We a

B DCT metadata caching -
& RC
B Dynamic switch between DCQP
Y

KRCORE: A Micmsecond

Xingda Weil2, Fangmjng Lu!,
nstitute of Paralle] g Distributeq Syst

Rong Chen*12 54 Haibo Chep!
ems, SEIEE, Shanghaj Jiao Tong University

*Shanghaj Al Laboratory

Abstract

We present KRCORE, gy RDMA library igp , Microsecond.
scale contro] plane op commodity RDMA hardware for elastic
Computing, KRCogrg €an establish 5 qu-ﬂedgcd RDMA con-
nection Within 10us (hundreds or thousands of times faster
than verbs), while only maimaining 2 (small) fixed-sizeq con-
nection Metadata a¢ cach node, Tegardless of the cluster scale,
The key ideas include vinualizing Pre-initjaljzeq kamcl—space
MA Connectiong instead of Creating ope from Scratch, ang
retrofitting advanceq RDMA dynamic Connected transport
With static transport fo, both Iow Connection Overhead ang
igh networking Speed. Under load spikes, KRCogrg can
shorten the Worker bootslmp time of ap eXisting disaggre.
8ated key-valye store (namely RACE Hashing) by 839, In
serverless computing (namely Fn), KRCogrg €an also redyce
the latency for uansfem’ng data through RDMA by 999,

1 Inlroduction

The desire for high resource utilizatiop has led o the devel-
Opment of elastic applicationg such as disapor. . . .
Systems [52. 16 gy o G

Data pooy Control (Other) -— Control (Rppa)
4

120 0
§ 90 gso
° 60 220
g
£ 30 £

o
°

s
0\e5 0@
55‘;;"‘“ S

. N2 .
Bt e

Fig. 1. (a) he execution time (Dagg) o WPical elastic Rpp,_
ehabled applications, 4q ®) the breakgoyy of control path ¢y,
RACE [67] js 5 disaggregateq key. vy store. FaRM.y2 47 ;0
@ database thy ¢y accelerate seryerjegy {ransactions [63], yogp
C [11] and TpC] are representagiye benchmarks for guep,
SYSIem. The seryerjegy Platform evalugieq i, py [43].

A Ccommon approach to avoiding the control patp cost is
to cache connections apq sh;

Cations, However, user-space Rpjy,
be directly shared by 40 e

QA

KRCore implementation

Implemented as a loadable kernel module
B 10,000LoC+ Rust code

B \With a C—shim layer to translate RDMA request to systemcalls

We are the first to port DCT to the kernel-space RDMA driver
B With ~250 LoC C code added to the mlnx-ofed-4.9 driver

Available on GitHub with continuously developments

B https: //github.com/SJTU-IPADS/krcore-artifacts

30

Evaluations
Questions aim to answer

(D How fast is KRCore’s control plane?
@ What are the costs KRCore added to RDMA’s data plane?

@ Can KRCore benefit existing applications that require elasticity?

Evaluations setup

Evaluation setup

1) A rack-scale cluster consists of 10 machines

@ Each with one ConnectX—4 100Gbps RNIC

Comparing targets
@M Verbs ——— the de facto user—space library for using RDMA
@ LITEM — kernel-space RDMA solution that use RCQP pool

[1 LITE Kernel RDMA Support for Datacenter Applications@SOSP’17

32

Control plane performance of KRCore

Case #1

B Multiple client connecting to the same server

Bottlenecked by creating
1000000 hardware queues

—-LITE
— 100000
@ ><verbs
~Z 10000
> } -+-KRCore
C
) 1000
+—
©
S 100 Skip user—space driver loading
2
3 10
C M
C
0 1
© 1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08
/| »%\
Connection creation throughput (3/’/)/)
N

Control plane performance

Case #1

B Multiple client connecting to the same server

1000000
—-| |TE
___ 100000
% -><verbs
~ 10000
> --KRCore
(-
o) 1000
-+
@©
- 100
o)
.6
) 10 .
= —sot
O 1
O 1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08

Connection creation throughput

Case #2

B Creating full-mesh connections

10000000
A1OOOO 00
100000
10000
1000
100

. W
1

1 40 79 118 157 196 235

Connection time (us

Number of clients connectq:“

N

QA

)

7/ /)

V4

34

Q

Data plane performance

Workload: synchronous one-sided RDMA

B The client keeps sending one-sided RDMA READ to a server in a run—to—completion way

B Request payload: 8B

.
D \ —LITE
= *
— i ><verbs
o) o *%— ® -¢-KRCore
0O 3 0/ N
C M
QO 2
©
O
S 1
0
0.0E+00 2.0E+07 4.0E+07 6.0E+07 VRN
[19))
Throughput NI

Data plane performance

Workload: synchronous one-sided RDMA

B The client keeps sending one-sided RDMA READ to a server in a run—to—completion way

B Request payload: 8B

Median latency (us)

1 System call latency (~1us)

0.0E+00 2.0E+07 4.0E+07 6.0E+07 AN N\

Throughput N7,

Data plane performance

Workload: synchronous one-sided RDMA

B The client keeps sending one-sided RDMA READ to a server in a run—to—completion way

B Request payload: 8B

Median latency (us)

0.0E+00 2.0E+07 4.0E+07 6.0E+07 AN N\

Throughput N7,

Accelerating disaggregated RDMA-enabled KVS

Target: RACEHashing@ATC’ 21 —verbs
50 . KRCore done verbs done —KRCore
= / / KRCore —LITE
@ 4O|_08d Spike i E i E A/SWI’[Ch to RCQP
B N | :
S . \ LITE done | |
= ¥ \d
: i h”
Q 20 |
e
(@) T ST T T VT T S SUPIR
) i
O ‘ .
- i
0 = | i
-1 -0.8-06-04-02 0 0.2 04 0.6 0.8 =1 12 14116 18 2 22 24 26 28 3 32 34 36 38 l<<\\\\‘\
Timeline (sec) °J

38

Summary and discussion

A microsecond-scale RDMA control plane
B By retrofitting DCT with kernel-space RDMA connection pool

Limitation
B KRCore trades data path due to kernel interception & DCT overhead

B Thus, it does not suit all the application scenarios

39

Conclusion of KRCore

The first to provide a microsecond-scale RDMA control plane

B While compatible to existing RDMA hardware/software

Elastic application can benefit from KRCore with little data path costs

B E.g.,, RDMA for disaggregated key—value store, serverless computing

il
Thanks & QA

