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A high-performance user-space networking feature

n With high bandwidth (up to 400Gbps) 

n Low latency (down to 2us)

Remote Direct Memory Access (RDMA)

RDMA and its primitives 

n One-sided: RNIC+ read/writes memory bypassing CPU

n Two-sided: a messaging primitive (send/recv) 

+ RNIC: RDMA-capable Network Card 

Improve the performance of distributed systems 

n E.g., key-value stores (RACE), transactions (FaRM-v2), etc. 
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+ FaRM-v2: Fast general distributed transactions with opacity@SIGMOD’19 

+ RACE: One-sided rdma-conscious extendible hashing for disaggregated memory@ATC’21 



3

To use RDMA, user must create RCQP (control plane)

n Reliable connected (RC) queue pair (QP)  

n Creating and connecting RCQPs may take a long time 

Problem: creating RDMA connections is slow
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The creation has three parts
① Loading the driver context at the user-space

Problem: creating RDMA connections is slow
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The creation has three parts
① Loading the driver context at the user-space

② Creating and configuring the hardware queues 

Problem: creating RDMA connections is slow
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The creation has three parts
① Loading the driver context at the user-space

② Creating and configuring the hardware queues 

③ Exchange the connection information with remote end

Problem: creating RDMA connections is slow
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The creation has three parts
① Loading the driver context at the user-space

② Creating and configuring the hardware queues 

③ Exchange the connection information with remote end

Problem: creating RDMA connections is slow
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Traditional RDMA-enabled applications are not affected

n E.g., RDMA-enabled databases, filesystems, scientific applications 

n Because they run a sufficient long time 

No problem for traditional applications

What about new applications that require elasticity? 
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Example: RDMA-enabled disaggregated key-value stores (KVS) 

n Nodes are separated:

n Memory nodes. store the KV-pairs 

n Compute nodes. use RDMA to read the KV-pairs from memory nodes 

Impact the performance of elastic applications 

Compute Memory

RDMA
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Benefits: handle loads in a resource efficient way elastically 

n If the load changes, we can dynamically add/remove nodes to cope with them 

Impact the performance of elastic applications 

Compute Memory

RDMA

However, new nodes need new RCQPs to the memory nodes

n Requests handled by the new nodes inevitably face the high tail latency 
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+ RACE is a state-of-the-art RDMA-enabled elastic KV
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Goal & this work:

reducing RDMA connection time from ms to us
and compatible to existing RDMA hardware & software
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QP 
Pool

Cache RCQPs in a connection pool

n The QPs in the pool can be reused by future applications with no connection cost 

Basic idea: connection pooling & reusing
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QP 
Pool

Cache RCQPs in a connection pool

n The QPs in the pool can be reused by future applications with no connection cost 

Basic idea: connection pooling & reusing
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QP 
Pool

Cache RCQPs in a connection pool

n The QPs in the pool can be reused by future applications with no connection cost 

Basic idea: connection pooling & reusing
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Different process/container cannot be shared the same QP

n RDMA is in default used in user-space (not designed for share among applications)

n User-space QP has a complex data structures (both at the user-space and in kernel)

n Further, cannot reduce the driver loading costs  

Challenge#1. User-space QPs cannot be shared 
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Kernel-space RDMA driver also support full-fledged RDMA

n Provide a near-same functionality as user-space QPs 

n E.g., ibv_qp (user-space RDMA QP) has an equivalent ib_qp in the kernel  

Solution #1. share QPs in a kernel-space QP pool
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Kernel-space RDMA driver also support full-fledged RDMA

n Provide a near-same functionality as user-space QPs 

n E.g., ibv_qp (user-space RDMA QP) has an equivalent ib_qp in the kernel  

Solution #1. share QPs in a kernel-space QP pool

Idea: put the qp pool in the kernel 

n Therefore, different applications can share the same QP

n i.e., we translate the API to the kernel-space QP  

App#1 App#2

Kernel-space QP pool

QP#0 QP#1 QP#2

ib_post_send

ibv_post_send

System call
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Kernel-space RDMA driver also support full-fledged RDMA

n Provide a near-same functionality as user-space QPs 

n E.g., ibv_qp (user-space RDMA QP) has an equivalent ib_qp in the kernel  

Solution #1. share QPs in a kernel-space QP pool

Further, a kernel-space solution avoid user-space driver loading

n i.e., kernel can pre-load all the driver context during boot time 



19

RCQP is a one-to-one mapping 

n Needs a dedicated QP to connect to a different server 

n Also, different CPU may have dedicated QP for the best performance [1] 

Challenge #2. Massive QPs cached in the pool

Therefore, we need M X N QPs cached in the pool 

n M: the number of machines in the cluster 

n N: the number of cores on the machine 

[1] Fast remote memory@NSDI’14 

…

N cores

M machines

QP0 QP0 QP0 QP0…

…Causes GBs of memory on 
modern clusters w/ >10K nodes
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Opportunity: Dynamically connected transport (DCT)

A less-used (but widely support) advance RDMA transport 

n E.g., NVIDIA supports DCT through NICs later than Connect-IB (released in 2014) 



21

Opportunity: Dynamically connected transport (DCT)

A less-used (but widely support) advance RDMA transport 

n E.g., NVIDIA supports DCT through NICs later than Connect-IB (released in 2014) 

A DCQP can connect to multiple nodes w/o user connection 

n The hardware can piggyback the connection with request and is extremely fast 

RCQP

Control (15ms) Data (2us)

One-sided 
requests

DCQP

Control + Data (3us)

One-sided 
requests
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Solution #2. Retrofit DCT as the shared connection

i.e., the server QP pool use DCQP as the default connection

n No need for a separate RCQP for each machine in the cluster

App#1 App#2

Kernel-space QP pool

ib_post_send

ibv_post_send

System call DCQP

Problem: DCT metadata discovery 

n To communicate with a specific host, the server must first create a DC Target, and hand-off 

the metadata associated with the target to the client 
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Solution #2. Retrofit DCT as the shared connection

Problem: DCT metadata discovery 

n To communicate with a specific host, the server must first create a DC Target, and hand-off 

the metadata associated with the target to the client 

Naïve solution

n Use unreliable-datagram (UD)-based RPC for the discovery

Drawbacks of RPC in our scenarios 

① Each server must use dedicated polling threads to handle the DCT discovery requests

② RPC’s latency can vibrate (to 10ms) due to queuing at the server-side 

UD supports connectionless
send/recv
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Our design: MetaServer

We dedicate few nodes in the cluster to store the DCT metadata 

n Possible: DCT metadata is extremely small (12B)

…

MS
Server addr DCT meta

0d:9a03:... 73|4096

...

...
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A separate architecture allows query metadata with one-sided RDMA

n i.e., implement the MetaServer in an RDMA-enabled key-value store

n Each machine maintains QPs connected to nearby MetaServers

Our design: MetaServer

We dedicate few nodes in the cluster to store the DCT metadata 

n Possible: DCT metadata is extremely small (12B)

…

MS
Server addr DCT meta

0d:9a03:... 73|4096

...

...

DCQP

MS

Query + control + data (10us)

One-sided 
requests
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Challenge #3. Correct QP multiplexing

We let each DCQP in the pool to be shared by multiple applications 

n Thus, each application can always choose a QP in the pool

App#1 App#2

Kernel-space QP pool

ib_post_send

ibv_post_send DCQP

QP QP

ibv_post_send

The shared QP is further virtualized to multiple user-space QP

n Provide the same semantic as RCQP to simplify development 
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Challenge #3. Correct QP multiplexing

We let each DCQP in the pool to be shared by multiple applications 

n Thus, each application can always choose a QP in the pool

Problem: shared QPs can be corrupted by various reasons  

n Worser, even applications correctly use the shared QP, the QP can be corrupted

n A corrupted QP will prevent progress (and requires re-connection)
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We add additional checks to prevent QP corruptions 

Behavior the same as a single QP, yet may use a shared QP 

1. Malformed requests 2. Queue overflows 3. Completion dispatch

App#1 App#2

Kernel-space QP pool

ib_post_send

ibv_post_send DCQP

QP QP

ibv_post_send

How to achieve so? We add additional checks to each request:

c c

Things to check
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Put it all together: KRCore

A networking library that provides us-scale RDMA connections

n On commodity RNICs that support DCT 

n 1,500X faster than ibverbs (in connection latency)

We also apply other optimizations 

n DCT metadata caching 

n Dynamic switch between DCQP & RCQP
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KRCore implementation

Implemented as a loadable kernel module 

n 10,000LoC+ Rust code 

n With a C-shim layer to translate RDMA request to systemcalls

Available on GitHub with continuously developments   

n https: //github.com/SJTU-IPADS/krcore-artifacts 

We are the first to port DCT to the kernel-space RDMA driver 

n With ~250 LoC C code added to the mlnx-ofed-4.9 driver 
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Evaluations

Questions aim to answer 

① How fast is KRCore’s control plane? 

② What are the costs KRCore added to RDMA’s data plane?

③ Can KRCore benefit existing applications that require elasticity? 
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Evaluations setup

Evaluation setup

① A rack-scale cluster consists of 10 machines 

② Each with one ConnectX-4 100Gbps RNIC 

Comparing targets

① Verbs --- the de facto user-space library for using RDMA 

② LITE[1] – kernel-space RDMA solution that use RCQP pool

[1] LITE Kernel RDMA Support for Datacenter Applications@SOSP’17 
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Control plane performance of KRCore
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Control plane performance

1

10

100

1000

10000

100000

1000000

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08C
o
nn

ec
ti
o
n 

la
te

nc
y 

(u
s)

Connection creation throughput 

LITE

verbs

KRCore

Case #1

n Multiple client connecting to the same server

Case #2

n Creating full-mesh connections

1

10

100

1000

10000

100000

1000000

10000000

1 40 79 118 157 196 235

C
o
nn

ec
ti
o
n 

ti
m

e 
(u

s)

Number of clients connected



35

Data plane performance
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Workload: synchronous one-sided RDMA

n The client keeps sending one-sided RDMA READ to a server in a run-to-completion way

n Request payload: 8B
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Data plane performance
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n The client keeps sending one-sided RDMA READ to a server in a run-to-completion way

n Request payload: 8B

System call latency (~1us)
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Data plane performance
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n The client keeps sending one-sided RDMA READ to a server in a run-to-completion way

n Request payload: 8B

DCT has reconnection overhead
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Accelerating disaggregated RDMA-enabled KVS
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Summary and discussion 

A microsecond-scale RDMA control plane

n By retrofitting DCT with kernel-space RDMA connection pool

Limitation 

n KRCore trades data path due to kernel interception & DCT overhead 

n Thus, it does not suit all the application scenarios  
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Conclusion of KRCore

Thanks & QA

The first to provide a microsecond-scale RDMA control plane 

n While compatible to existing RDMA hardware/software 

Elastic application can benefit from KRCore with little data path costs

n E.g., RDMA for disaggregated key-value store, serverless computing 


