
Zero-Change Object Transmission 
for Distributed Big Data Analytics

Mingyu Wu, Shuaiwei Wang, Haibo Chen, Binyu Zang

Shanghai Jiao Tong University



Distributed Big-data Analytics

• Widely used in many areas

• Hiding messy details on distributed data processing
– Task scheduling, resource management, fault tolerance…

– Making programming much easier!

2



Distributed Big-data Analytics

• Widely used in many areas

• Hiding messy details on distributed data processing

• Most are written in languages like Java and Scala
– Relying on the runtime environment provided by JVMs

3



Workflow of Big-data Processing

• Launching managers and workers on various machines
– Taking Spark as an example: 1 manager, 3 workers

4



Workflow of Big-data Processing

• Launching managers and workers on various machines
– Taking Spark as an example: 1 manager, 3 workers

5

1. upload applications



Workflow of Big-data Processing

• Launching managers and workers on various machines
– Taking Spark as an example: 1 manager, 3 workers

6

2. Task assignment



Workflow of Big-data Processing

• Launching managers and workers on various machines
– Taking Spark as an example: 1 manager, 3 workers

7

3. Inter-worker shuffling



Workflow of Big-data Processing

• Launching managers and workers on various machines
– Taking Spark as an example: 1 manager, 3 workers

8

4. Returning results



Workflow of Big-data Processing

• Launching managers and workers on various machines
– Taking Spark as an example: 1 manager, 3 workers

9

All nodes frequently 
communicate with each other!



Costly Inter-JVM Communications

• Each JVM has its own way to represent Java objects
– Header: storing an address to its type information (Klass)

– Data: storing absolute addresses of other objects

– Both are different in different JVMs

10

Header Data

Klass A (0x1000)

Fields: …
Methods: …

obj0 (0x2000)

obj1 (0x4000)

JVM1

Klass A (0x10000)

Fields: …
Methods: …

obj0 (0x1000)

obj1 (0x3000)

JVM2



Costly Inter-JVM Communications

• Java default solution: serialization/deserialization (S/D)
– Serialization: objects -> byte stream (general format)

11

Klass A

Fields: …
Methods: …

obj0

obj1 010010110…
Byte stream

Ser



Costly Inter-JVM Communications

• Java default solution: serialization/deserialization (S/D)
– Serialization: objects -> byte stream (general format)

– Deserialization: byte stream -> objects

12

Klass A

Fields: …
Methods: …

obj0

obj1 010010110…
Byte stream

Klass A

Fields: …
Methods: …obj0

obj1

Ser DeSer



Costly Inter-JVM Communications

• S/D is quite costly
– Ser: traversing all reachable objects and pack them

– Deser: decoding bytes and allocating new objects

– Both compute-intensive, cannot be improved by better network

– S/D can account for more than 50% of the execution time!

13

Ser Network DeSer
Small bandwidth

Large bandwidth



Existing S/D Optimizations

• Kryo: improving the original (Java built-in) S/D tool
– The layout of byte streams becomes more compact

– The transformation phases still exist

14

Klass A

Fields: …
Methods: …

obj0

obj1 010010…
Byte stream

Klass A

Fields: …
Methods: …obj0

obj1

Ser DeSer

smaller



Existing S/D Optimizations

• Kryo: improving the original (Java built-in) S/D tool

• Skyway: directly sending object graphs
– Encoding/decoding type information and references during S/D

– Still require transformation on references and type information

15

Klass A

Fields: …
Methods: …

obj0

obj1

Klass A

Fields: …
Methods: …obj0

obj1

Ser DeSer
A

A

20



Existing S/D Optimizations

• Kryo: improving the original (Java built-in) S/D tool

• Skyway: directly sending object graphs

• Naos: RDMA-friendly object-based transmission
– References and type information still requires fixing 

16

Klass A

Fields: …
Methods: …

obj0

obj1

Klass A

Fields: …
Methods: …obj0

obj1

RDMA
write DeSer

A

A

20



Existing S/D Optimizations

• Kryo: improving the original (Java built-in) S/D tool

• Skyway: directly sending object graphs

• Naos: RDMA-friendly object-based transmission
– References and type information still requires fixing 

17

Klass A

Fields: …
Methods: …

obj0

obj1

Klass A

Fields: …
Methods: …obj0

obj1

RDMA
write DeSer

A

A

20

Can we totally remove the 
S/D-related transformation?



Our Solution: ZCOT

• Zero-Change Object Transmission
– Upon receiving, objects can be directly used without any change

• With ZCOT, objects can be directly read and written

18

Klass A

Fields: …
Methods: …

obj0

obj1

Direct write

Direct read



How to Achieve This?

• Each JVM has a shared space (exchange space)
– Objects can be directly accessed without pointer fixing

– A per-JVM private space is used for normal allocation

19

Private space Private space

Exchange space

JVM1 JVM2

access access



How to Achieve This?

• Each JVM has a shared space (exchange space)

• Exchange space contains a class sub-space
– Storing type information used by objects in the exchange space

– No class pointer is required to fix

20

Exchange space

Klass A
Klass B
Klass C

ObjectClass



Challenges for ZCOT
• How to construct a shared space for all JVMs?

• How to remain compatible with existing applications?

• How to manage memory resources among JVMs?

21



Space Construction: DCDS

• Extending the built-in APPCDS to support distributed 
sharing
– Allowing applications to share classes among JVMs

– Reusing JDK built-in tools to construct a shared space

22

JVM1

JVM2

JVM3

user jar

APPCDS tools

class archive

1. Generating archives 2. Distributing

Klass A
Klass B
Klass C

Class Object

3. Mapping



Compatibility with Applications

• ZCOT sends/receives data in an object format 

• However: existing applications still use S/D interfaces
– Ser: writeObject(Object obj) (into a byte OutputStream)

– DeSer: readObject() (from a byte InputStream) 

23

How to remain compatible with ZCOT's object-based mechanism?



Compatibility with Applications

• ZCOT's Solution: two-level data transmission
– Dividing into frontend and backend

– Frontend: still remaining compatible with original S/D interfaces

24

0x3000 0x100 0x3000 0x100

OutputStream InputStream

start
addr length

addr:
0x3000

addr:
0x3000



Compatibility with Applications

• ZCOT's Solution: two-level data transmission
– Dividing into frontend and backend

– Frontend: still remaining compatible with original S/D interfaces

– Backend: sending and receiving real objects

25

addr:
0x3000

OutputStream InputStream

length: 0x100

Send buffer Receive buffer

addr:
0x3000

0x3000 0x100 0x3000 0x100



Distributed Memory Management

• Using a metadata server to manage the exchange space
– Basic unit: chunks (default size: 256MB)

– Allocation bitmap: marking if a chunk has been allocated

26

…

0 1 0 0 1 0 0 …

exchange space

allocation bitmap

chunk



Distributed Memory Management

• Using a metadata server to manage the exchange space
– Basic unit: chunks (default size: 256MB)

– Allocation bitmap: marking if a chunk has been allocated

– Chunk mapping table: marking which JVMs has the chunk

27

…

0 1 0 0 1 0 0 …

exchange space

allocation bitmap

chunk

chunk mapping table
chunk copy-set

1
4 {0}

{1}



Distributed Memory Management

• Using a metadata server to manage the exchange space
– Basic unit: chunks (default size: 256MB)

– Allocation bitmap: marking if a chunk has been allocated

– Chunk mapping table: marking which JVMs has the chunk

– Member table: info for all JVMs

28

…

0 1 0 0 1 0 0 …

exchange space

allocation bitmap

chunk

chunk mapping table
chunk copy-set

1
4 {0}

{1}

member table
JVMID ip:port

0
1 ip1:2233

ip0:7270



RPC Interfaces
• The metadata server provides 4 RPC interfaces

– register: register a JVM into the member table
– acquire: acquire a new chunk from the metadata server
– get_remote: get a chunk from other JVMs

• Coordinated by the metadata server

– release: release a chunk to the metadata server

• Integrated with memory management of JVMs
– E.g., GC should invoke the release RPC

29



The Workflow of ZCOT

30

private space exchange space

private space exchange space

Sender's view

Receiver's view

meta-server



The Workflow of ZCOT

31

private space exchange space

private space exchange space

Sender's view

Receiver's view

meta-server
acquire

JVM1 -> chunk1

1. Acquire chunks

0x10000



The Workflow of ZCOT

32

private space exchange space

private space exchange space

Sender's view

Receiver's view

meta-server JVM1 -> chunk1

copy2. Local copy addr: 0x10000
len: 0x100



The Workflow of ZCOT

33

private space exchange space

private space exchange space

Sender's view

Receiver's view

meta-server JVM1 -> chunk1
addr: 0x10000
len: 0x100

3. Frontend sending

Outputstream

Inputstream



The Workflow of ZCOT

34

private space exchange space

private space exchange space

Sender's view

Receiver's view

meta-server JVM1 -> chunk1

4. Access faults 
on the receiver

access 0x10000

addr: 0x10000
len: 0x100



The Workflow of ZCOT

35

private space exchange space

private space exchange space

Sender's view

Receiver's view

meta-server JVM1 -> chunk1

5. Requesting chunks get_remote

forward



The Workflow of ZCOT

36

private space exchange space

private space exchange space

Sender's view

Receiver's view

meta-server

6. Backend sending

send chunk1



More Details in Our Paper
• Data persistence 

• Group-based prefetching

• Integrated with GC

• Data deduplication among multiple rounds

37



Experimental Setup

• Hardware: A cluster with four nodes
– 100 Gbit/s Mellanox ConnectX-5 NICs 

– Dual Xeon E5-2650 CPUs and 128GB DRAM for each

• Three evaluated applications 
– Microbenchmark: data structures used in Naos and Skyway

– Spark-v3.0.0

– Flink-v1.14

38



Mircobenchmark

• Using the microperf tester from Naos for evaluation

• Evaluated against four aforementioned baselines
– Java built-in (JSL), Kryo, Skyway, Naos

• Improving transmission phases against all baselines
– 2.28x compared with Naos

39



Spark Performance
• Easy of integration

– Implementing a ZCSerializer in place of Kryo and JSL

– Only contains 70 lines of code

40

• Evaluation results
– 13.9% improvement against Kryo

– 4.19x speedup in the write part

– 2.95x in the read part



Flink Performance
• Evaluated with four different queries in TPC-H 

– 22.2% improvement at best (Q10)

– Less improvement since Flink S/D is manually optimized

41



Conclusion

• Data transmission is a costly phase in big-data analytics
– More severe in Java due to serialization/deserialization (S/D)

• ZCOT: Zero-Change Object Transmission
– Sending and receiving objects through a shared exchange space

– Remaining compatible with existing S/D interfaces

– Significant speedup against S/D libraries

42

Thanks!


