Zero-Change Object Transmission
for Distributed Big Data Analytics

Mingyu Wu, Shuaiweli Wang, Haibo Chen, Binyu Zang
Shanghai Jiao Tong University

) Distributed Big-data Analytics

« Widely used in many areas

« Hiding messy details on distributed data processing

— Task scheduling, resource management, fault tolerance...
— Making programming much easier!

—
- 5\

) Distributed Big-data Analytics

« Widely used in many areas

« Hiding messy details on distributed data processing

« Most are written in languages like Java and Scala
— Relying on the runtime environment provided by JVMs

neoqd4 .
g J L SpQﬂ"g

é [
°
>
>
/
A

) Workflow of Big-data Processing

« Launching managers and workers on various machines

— Taking Spark as an example: 1 manager, 3 workers

) Workflow of Big-data Processing

« Launching managers and workers on various machines

— Taking Spark as an example: 1 manager, 3 workers

1. upload applications

) Workflow of Big-data Processing

« Launching managers and workers on various machines

— Taking Spark as an example: 1 manager, 3 workers

2. Task assignment

) Workflow of Big-data Processing

« Launching managers and workers on various machines

— Taking Spark as an example: 1 manager, 3 workers

) Workflow of Big-data Processing

« Launching managers and workers on various machines

— Taking Spark as an example: 1 manager, 3 workers

4. Returning results

) Workflow of Big-data Processing

« Launching managers and workers on various machines

— Taking Spark as an example: 1 manager, 3 workers

AAAAAA J‘Z _----=-~_ All nodes frequently
K}/ 4~ communicate with each other!

) Costly Inter-JVM Communications

- Each JVM has its own way to represent Java objects

— Header: storing an address to its type information (K/ass)

— Data: storing absolute addresses of other objects
— Both are different in different JVMs

JVM1 JVM2
Klass A (0x1000) Klass A (0x10000)
Fields: . Header Data Fields:
‘ Methods: ...

Methods
/_,Objﬂ (0x2000)

obj1 (0x4000)

obj0 (0x1000)

- obj1 (0x3000)

Costly Inter-JVM Communications

- Java default solution: serialization/deserialization (S/D)

— Serialization: objects -> byte stream (general format)

Klass A

Fields: .
Methods

obJO

Ser

-~

Byte stream

010010110...

11

Costly Inter-JVM Communications

- Java default solution: serialization/deserialization (S/D)
— Serialization: objects -> byte stream (general format)
— Deserialization: byte stream -> objects

Klass A Klass A

Fields: . objO Ser DeSer

- | Fields: ...
obj0 Methods: ...

objl

.

Methods
Byte stream -
010010110...

) Costly Inter-JVM Communications

« S/D is quite costly

Ser: traversing all reachable objects and pack them

Deser: decoding bytes and allocating new objects
Both compute-intensive, cannot be improved by better network

S/D can account for more than 50% of the execution time!

Ser Network DeSer

Small bandwidth [

Large bandwidth -

13

) Existing S/D Optimizations

« Kryo: improving the original (Java built-in) S/D tool

— The layout of byte streams becomes more compact

— The transformation phases still exist

Klass A
Fields: ... obj0
Methods: ..

1

Ser

» Byte stream »

010010...

|
smaller

Klass A

- | Fields: ...
obj0 Methods: ...

objl

DeSer

|

) Existing S/D Optimizations

« Kryo: improving the original (Java built-in) S/D tool
- Skyway: directly sending object graphs

— Encoding/decoding type information and references during S/D
— Still require transformation on references and type information

Klass A Klass A
Fields: ... | Fields: ...
Methods: . Methods: ...

j\.objo Ser

- - OEX
j1 0-
L

) Existing S/D Optimizations

« Kryo: improving the original (Java built-in) S/D tool
- Skyway: directly sending object graphs

« Naos: RDMA-friendly object-based transmission

— References and type information still requires fixing
Klass A Klass A

II\:/:eicrj]s:d... j\.objo RDMA DeSer “ II\:/:e!(f]sd
ethoas: .. write A ethoas: ...
- OEE
i _
I

obj0

objl

.

-~

-

Can we totally remove the

~

S/D-related transformation?

_/

) Our Solution: ZCOT

« Zero-Change Object Transmission

— Upon receiving, objects can be directly used without any change

« With ZCOT, objects can be directly read and written

Klass A
Fields: ... objo Direct read

Methods: j\. 4—/
Direct write

18

) How to Achieve This?

- Each JVM has a shared space (exchange space)
— Objects can be directly accessed without pointer fixing
— A per-JVM private space is used for normal allocation

JVM1

Private space

Private space

accesNExchange space ‘%‘ccess

JVM2

19

) How to Achieve This?

- Each JVM has a shared space (exchange space)

- Exchange space contains a class sub-space

— Storing type information used by objects in the exchange space
— No class pointer is required to fix

Exchange space

Klass B
Klass C

) Challenges for ZCOT

« How to construct a shared space for all JVMs?
« How to remain compatible with existing applications?

 How to manage memory resources among JVMs?

21

Space Construction: DCDS

« Extending the built-in APPCDS to support distributed

sharing

— Allowing applications to share classes among JVMs

— Reusing JDK built-in tools to construct a shared space

1. Generating archives

user jar llﬂa

APPCDS tools

1

.] ,,'/
class archive EL--

2. Distributing

E
/
/

«
’

JVM1

JVM2

YE] e

... 3. Mapping

Class

Object

==

22

) Compatibility with Applications

« ZCOT sends/receives data in an object format

- However: existing applications still use S/D interfaces

— Ser: writeObject(Object obj) (into a byte OutputStream)
— DeSer: readObject() (from a byte InputStream)

How to remain compatible with ZCOT's object-based mechanism?

23

) Compatibility with Applications

« ZCOT's Solution: two-level data transmission

addr:

0x3000 "\

— Dividing into frontend and backend

— Frontend: still remaining compatible with original S/D interfaces

OutputStream

InputStream

:=

0x3000

0x100

0x3000

0x100

addr:
/0x3000

/|

start

addr length

AN

==

24

) Compatibility with Applications

« ZCOT's Solution: two-level data transmission
— Dividing into frontend and backend
— Frontend: still remaining compatible with original S/D interfaces
— Backend: sending and receiving real objects

addr: OutputStream InputStream addr:
0x3000 0x3000 | 0x100 | s | 0x3000 0x100

e

/0x3000

@

length: 0x100

_ Y1) PN T L

Send buffer Receive buffer 25

) Distributed Memory Management

- Using a metadata server to manage the exchange space

— Basic unit: chunks (default size: 256 MB)
— Allocation bitmap: marking if a chunk has been allocated

allocation bitmap

exchange space

0100100...

T

26

) Distributed Memory Management

- Using a metadata server to manage the exchange space
— Basic unit: chunks (default size: 256 MB)

— Allocation bitmap: marking if a chunk has been allocated
— Chunk mapping table: marking which JVMs has the chunk

allocation bitmap

exchange space

chunk mapping table

chunk

copy-set

1

{1}

—

0100X00...

4

{0}

T

27

) Distributed Memory Management

- Using a metadata server to manage the exchange space
— Basic unit: chunks (default size: 256 MB)

— Allocation bitmap: marking if a chunk has been allocated

— Chunk mapping table: marking which JVMs has the chunk

— Member table: info for all JVMs

allocation bitmap

exchange space

chunk mapping table

member table

—

0100X00...

chunk |copy-set JVMID | ip:port
1 {1} — L » 0 ip0:7270
2 o —F 1 [ip12233

T

28

) RPC Interfaces

- The metadata server provides 4 RPC interfaces
— register: register a JVM into the member table
— acquire: acquire a new chunk from the metadata server

— get_remote: get a chunk from other JVMs
« Coordinated by the metadata server

— release: release a chunk to the metadata server

 Integrated with memory management of JVMs
— E.g., GC should invoke the release RPC

29

) The Workflow of ZCOT

Sender's view

Receiver's view

__

 private space exchange space

__

 private space exchange space!

30

) The Workflow of

ZCOT

1. Acquire chunks private space exchange space!

-
Sender's view ! -

. private space exchange space!

Naoo
acquire

meta-server|| JVM1 -> chunkl

Receiver's view C]

31

) The Workflow of ZCOT

2. Local copy

Sender's view !

Receiver's view

__

=isEm

i 2ddr: 0x10000

__

. private space exchange space!

i len: 0x100

32

) The Workflow of ZCOT

3. Frontend sending

Sender's view

Outputstream

addr: 0x10000
len:; 0x100

Inputstream

Receiver's view

__

' private space exchange space

omm | |omm

__

. private space exchange space!

33

) The Workflow of ZCOT

Sender's view

4. Access faults
on the receiver

Receiver's view

__

' private space exchange space

omm | |omm

__

. private space exchange space!

access 0x10000

addr: 0x10000
len: 0x100

34

) The Workflow of ZCOT

__

' private space exchange space!

- e
Sender's view ! - -

forward

meta-server|| JVM1 -> chunkl

5. Requesting chunks get remote— __

__

. private space exchange space!

Receiver's view C]

35

) The Workflow of ZCOT

Sender's view

6. Backend sending

Receiver's view

__

— '-

__

 private space exchange space!

36

More Details in Our Paper

Data persistence

Group-based prefetching

Integrated with GC

Data deduplication among multiple rounds

37

) Experimental Setup

« Hardware: A cluster with four nodes
— 100 Gbit/s Mellanox ConnectX-5 NICs
— Dual Xeon E5-2650 CPUs and 128GB DRAM for each

« Three evaluated applications
— Microbenchmark: data structures used in Naos and Skyway
— Spark-v3.0.0
— Flink-v1.14

38

) Mircobenchmark

« Using the microperftester from Naos for evaluation

+ Evaluated against four aforementioned baselines
— Java built-in (JSL), Kryo, Skyway, Naos

- Improving transmission phases against all baselines
— 2.28x compared with Naos [1 st O kovo [eos [Sywey [2007

250

Y Y N
(=] a (=]
o o o
1 il

Execution time (ms)
(4]
o

o
1

) Spark Performance

« Easy of integration

— Implementing a ZCSerializer in place of Kryo and JSL
— Only contains 70 lines of code

gzoo- 2001
- Evaluation results i =l
- 13.9% improvement againSt KryO e o“JSIL-KrIyo—ZCIOT ’ JéL-Krlyo_:
.) LR wc TC
— 4.19x speedup in the write part =] T [
— 2.95x in the read part e I
CEES,

JSL Kryo ZCOT JSL Kryo ZCOT JSL Kryo ZCOT

) Flink Performance

 Evaluated with four different queries in TPC-H
— 22.2% improvement at best (Q10)
— Less improvement since Flink S/D is manually optimized

Vanilla ZCOT

(*2]
o
1

__

Execution time (s)
=Y
o

N
o o
I
1 1
1 1 |
1
U
- 4 i)
ﬂ
| I |
I] 1
1 1

Q1 Q3 Q6 Q10

) Conclusion

- Data transmission is a costly phase in big-data analytics

— More severe in Java due to serialization/deserialization (S/D)

« ZCOT: Zero-Change Object Transmission

— Sending and receiving objects through a shared exchange space
— Remaining compatible with existing S/D interfaces

Thanks'

— Significant speedup against S/D libraries

