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Outsourced Storage

» Data outsourcing Is a plausible storage solution in data explosion
« Global datasphere grows to 175 ZB by 2025
« 49% of the world’s stored data will reside in public clouds [

» Two primary reguirements
« Storage efficiency: reduce storage overhead as much as possible
« Data confidentiality: defend against data privacy leakage

[*] https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf



Data Deduplication

» A space-efficient storage approach
« Unit: chunk (fixed-size or variable-size)
« Compute a fingerprint for each chunk (e.g., SHA-256)

* Manage fingerprint index to track stored chunks
« Store only one copy of duplicate chunks

* Achieve ~10x storage space savings in backup workloads [Wallace, FAST’12]

FP-> [addr] size|§




Deduplication-after-Encryption

» Deduplication-after-Encryption (DaE)
« Augment deduplication with encryption for data confidentiality

» Carefully encrypt chunks to preserve deduplication effectiveness on
ciphertext chunks after encryption

» Message-locked encryption uses a key derived from chunk

content [Bellare, EuroCrypt'13] C|0ntent-derived key
* Enable cross-user deduplication on w2 [ Plaintext M, [~ 2| Ciphertext C,
ciphertext chunks Can be H HCan be
* e.g., Key = hash of plaintext chunk dedup’ed dedup’ed
« Server-aided key management ke Plaintext M, K%? Ciphertext C,

« Deploy a key server to prevent brute-force

. Content-derived key
attacks [Bellare, Security’13]



Limitations of DaE

» L1: High key management overhead
« Storage: store a key for each chunk
* Performance: key generation overhead is expensive [Ren, ATC'21]

» L2: Incompatibility with compression

« Ciphertext chunks cannot be further compressed
« Compression before encryption - leak compressed chunk lengths [Chen, SYSTOR’21]

» L3: Security risks
 Single point-of-attack due to centralized server-aided key management
« DaE is deterministic - vulnerable to frequency analysis [Li, EuroSys’20]



Deduplication-before-Encryption

» Deduplication-before-Encryption (DbE)

« We explore DbE, which performs deduplication on plaintext chunks,
followed by encrypting non-duplicate chunks

» Benefits over DaE by design

* Encryption can use content-independent keys (L1 addressed)

« Compression can be applied on non-duplicate plaintext chunks after
deduplication (L2 addressed)

* Deploying a key server for key generation is unnecessary (L3 addressed)

» Question: how should deduplication be protected?
« DDbE’s deduplication process is no longer protected by encryption



Contributions

» DEBE: a shielded DbE-based deduplicated storage system based
on shielded execution
« Explore DbE with aid of Intel SGX
* Apply frequency-based deduplication for performance and security

» Experiments show that DEBE outperforms conventional DakE
approaches in performance, storage savings, and security
 Upto 13.1x upload speedup over DUpLESS [Bellare, Security’13]
+ 93.8% key metadata storage saving over DaE
* Reduce information leakage without compromising storage efficiency



Intel SGX Basics

» Enclave: secure memory region realized by Intel Enclave
SGX Trusted
 OCalls and ECalls to interact with untrusted applications
applications | 4
o OCansl ‘ ECalls
» SGX limitations in performance AT
* Enclave page cache (EPC) has limited size (e.g., 128 MiB) applications

« Exceeding EPC size - expensive EPC paging overhead
« ECalls and OCalls lead to context-switching overhead

»Challenge: How to mitigate SGX overhead in DEBE?



Overview

- L. Control channel Cloud Storage
M
pool
Chunk|- - -|Chunk [JC1LICIC10])Y Enclave — @
— Data channel

Clients

» Target-based deduplication
* Protect DbE via Intel SGX
« Perform deduplication and compression over plaintext chunks in enclave

» Communication
« Control channel: transmit commands for storage operations

« Data channel: transmit plaintext chunks to enclave
» Protected by a short-term session key shared by a client and enclave
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» Frequency-based deduplication: separate deduplication process
In two phases based on chunk frequencies

* First phase: Manage small fingerprint index in enclave to remove most
duplicates - mitigate EPC paging overhead

« Second phase: Manage full index out of enclave to remove remaining few
duplicates - reduce context-switching overhead

» A small fraction of top frequent chunks
contribute a large fraction of duplicates

* In VM, top-5% of frequent chunks contribute
to a duplicate rate of 97%

Duplicate Rate (%

o
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Architecture

» Track frequencies of plaintext chunks

: PR | " o= data key
» Frequency-based deduplication key management |- ©:10" | sorae
. : O
 Remove duplicates of most frequent frequency 93 (2] |3 pool
tracking < |B 3
chunks 4 e .@
: .. ] 25 o
« Query full index to remove remaining gfrzqeléi';%abt?osfd — S| |°
duplicates of less frequent chunks 3 Enclave | . o
- Protect query information via query key full index

» Compress non-duplicate chunks and encrypt compressed chunks via
data key
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Frequency Trackl

» Use Count-Min Sketch (CM-Sketch) to track approximate

frequency of each chunk

ng

w counters per row
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 Fixed memory usage with provable g , .
error bounds F T N O s
» Divide fingerprint into r pieces for o | e e
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» Nearly no extra performance 5 B i .
chunk fingerprint Count-Min Sketch

overhead

1

J frequency =

minimum counter
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First-Phase Deduplication

» Remove duplicates from k most frequent plaintext chunks
« Expect to remove a large fraction of duplicates

» Manage top-k index in enclave minheap hash table
* Limited EPC usage - O(k) o}t FP->[s[freq] addr [ size]
- Min-heap to differentiate the top-k-frequent /E‘.’.’.’.’f_:;;"_‘;“‘;7};:;;""535,; """ e
and less frequent chunks L o
---------------- t FP>[e]req | addr| size|

 Hash table to track chunk information for
duplicate detection
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Second-Phase Deduplication

» Remove duplicates from remaining less frequent chunks

» Manage full index outside enclave

* Protected by query key
« Hash table: encrypted fingerprint - encrypted chunk information

» Enclave deterministically encrypts the fingerprint of each
remaining plaintext chunk with query key

« Query full index via Ocalls
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Experimental Setup

» Implement DEBE in C++ on Linux
 Intel SGX SDK Linux 2.7, OpenSSL 1.1.1, and Intel SGX SSL
* FastCDC, LZ4
« ~17.5K LoC

» Datasets
 Five real-world backup workloads: DOCKER, LINUX, FSL, MS, and VM

> Testbed

« Multiple machines connected with 10GbE
« Each machine has Intel Core 15-7500 3.4GHz and 32GiB RAM
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Overall Performance

» Baselines
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» DEBE outperforms all DaE approaches in uploads

« Upto 13.1x speedups over DUpLESS
» Avoid key generation performance overhead
* Avoid encryption and compression for duplicate data

» 8.5% download speed drops compared with DaE
« Load data into enclave for decryption and decompression
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Trace-Driven Performance
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» DEBE outperforms CE in uploads
« FSL: 246.5-277.5 MiB/s in DEBE; 163.5-179.1 MiB/s in CE

» Download speeds of both DEBE and CE are almost identical
« Throttled by disk 1/O
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» In FSL, DEBE saves 93.8% of key metadata compared with DaE

« DaE: a 32-byte key for each chunk (in AES-256)

 DEBE: two long-term keys (data key and query key); a 16-byte IV for each
non-duplicate chunk

« As in traditional symmetric encryption
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» Quantify frequency leakage by KLD (a.k.a., relative entropy to
uniform distribution)

« Low KLD implies high security

» Reduce KLD of TED (L, Eurosys201 by up to 87.7% in LINUX
 TED needs to store 15% more data to enhance security
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Conclusion

» DEBE realizes DbE via Intel SGX

« Perform deduplication and compression in enclave
« Apply frequency-based deduplication
« Qutperform DaE approaches in performance, storage, and security

» See our paper and technical report for more details

» Source code: https://github.com/yzr95924/DEBE
* Received all three artifact badges
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