Secure and Lightweight Deduplicated Storage via
Shielded Deduplication-Before-Encryption

Zuoru Yang?, Jingwei Li?%, Patrick P. C. Leel

The Chinese University of Hong Kong
2University of Electronic Science and Technology of China

USENIX ATC 2022

Outsourced Storage

» Data outsourcing Is a plausible storage solution in data explosion
« Global datasphere grows to 175 ZB by 2025
« 49% of the world’s stored data will reside in public clouds [

» Two primary reguirements
« Storage efficiency: reduce storage overhead as much as possible
« Data confidentiality: defend against data privacy leakage

[*] https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Data Deduplication

» A space-efficient storage approach
« Unit: chunk (fixed-size or variable-size)
« Compute a fingerprint for each chunk (e.g., SHA-256)

* Manage fingerprint index to track stored chunks
« Store only one copy of duplicate chunks

* Achieve ~10x storage space savings in backup workloads [Wallace, FAST’12]

FP-> [addr] size|§

Deduplication-after-Encryption

» Deduplication-after-Encryption (DaE)
« Augment deduplication with encryption for data confidentiality

» Carefully encrypt chunks to preserve deduplication effectiveness on
ciphertext chunks after encryption

» Message-locked encryption uses a key derived from chunk

content [Bellare, EuroCrypt'13] C|0ntent-derived key
* Enable cross-user deduplication on w2 [Plaintext M, [~ 2| Ciphertext C,
ciphertext chunks Can be H HCan be
* e.g., Key = hash of plaintext chunk dedup’ed dedup’ed
« Server-aided key management ke Plaintext M, K%? Ciphertext C,

« Deploy a key server to prevent brute-force

. Content-derived key
attacks [Bellare, Security’13]

Limitations of DaE

» L1: High key management overhead
« Storage: store a key for each chunk
* Performance: key generation overhead is expensive [Ren, ATC'21]

» L2: Incompatibility with compression

« Ciphertext chunks cannot be further compressed
« Compression before encryption - leak compressed chunk lengths [Chen, SYSTOR’21]

» L3: Security risks
 Single point-of-attack due to centralized server-aided key management
« DaE is deterministic - vulnerable to frequency analysis [Li, EuroSys’20]

Deduplication-before-Encryption

» Deduplication-before-Encryption (DbE)

« We explore DbE, which performs deduplication on plaintext chunks,
followed by encrypting non-duplicate chunks

» Benefits over DaE by design

* Encryption can use content-independent keys (L1 addressed)

« Compression can be applied on non-duplicate plaintext chunks after
deduplication (L2 addressed)

* Deploying a key server for key generation is unnecessary (L3 addressed)

» Question: how should deduplication be protected?
« DDbE’s deduplication process is no longer protected by encryption

Contributions

» DEBE: a shielded DbE-based deduplicated storage system based
on shielded execution
« Explore DbE with aid of Intel SGX
* Apply frequency-based deduplication for performance and security

» Experiments show that DEBE outperforms conventional DakE
approaches in performance, storage savings, and security
 Upto 13.1x upload speedup over DUpLESS [Bellare, Security’13]
+ 93.8% key metadata storage saving over DaE
* Reduce information leakage without compromising storage efficiency

Intel SGX Basics

» Enclave: secure memory region realized by Intel Enclave
SGX Trusted
 OCalls and ECalls to interact with untrusted applications
applications | 4
o OCansl ‘ ECalls
» SGX limitations in performance AT
* Enclave page cache (EPC) has limited size (e.g., 128 MiB) applications

« Exceeding EPC size - expensive EPC paging overhead
« ECalls and OCalls lead to context-switching overhead

»Challenge: How to mitigate SGX overhead in DEBE?

Overview

- L. Control channel Cloud Storage
M
pool
Chunk|- - -|Chunk [JC1LICIC10])Y Enclave — @
— Data channel

Clients

» Target-based deduplication
* Protect DbE via Intel SGX
« Perform deduplication and compression over plaintext chunks in enclave

» Communication
« Control channel: transmit commands for storage operations

« Data channel: transmit plaintext chunks to enclave
» Protected by a short-term session key shared by a client and enclave

Main ldea

2 100
80
60

4
23 - DOCKER — VM =— MS
LINUX = FSL

0 20 40 60 80 100
Top-#% Frequent Chunks
» Frequency-based deduplication: separate deduplication process
In two phases based on chunk frequencies

* First phase: Manage small fingerprint index in enclave to remove most
duplicates - mitigate EPC paging overhead

« Second phase: Manage full index out of enclave to remove remaining few
duplicates - reduce context-switching overhead

» A small fraction of top frequent chunks
contribute a large fraction of duplicates

* In VM, top-5% of frequent chunks contribute
to a duplicate rate of 97%

Duplicate Rate (%

o

10

Architecture

» Track frequencies of plaintext chunks

: PR | " o= data key
» Frequency-based deduplication key management |- ©:10" | sorae
. : O
 Remove duplicates of most frequent frequency 93 (2] |3 pool
tracking < |B 3
chunks 4 e .@
: ..] 25 o
« Query full index to remove remaining gfrzqeléi';%abt?osfd — S| |°
duplicates of less frequent chunks 3 Enclave | . o
- Protect query information via query key full index

» Compress non-duplicate chunks and encrypt compressed chunks via
data key

11

Frequency Trackl

» Use Count-Min Sketch (CM-Sketch) to track approximate

frequency of each chunk

ng

w counters per row

SMO. 4

 Fixed memory usage with provable g , .
error bounds F T N O s
» Divide fingerprint into r pieces for o | e e
counting P e e U O R Y
» Nearly no extra performance 5 B i .
chunk fingerprint Count-Min Sketch

overhead

1

J frequency =

minimum counter

12

First-Phase Deduplication

» Remove duplicates from k most frequent plaintext chunks
« Expect to remove a large fraction of duplicates

» Manage top-k index in enclave minheap hash table
* Limited EPC usage - O(k) o}t FP->[s[freq] addr [size]
- Min-heap to differentiate the top-k-frequent /E‘.’.’.’.’f_:;;"_‘;“‘;7};:;;""535,; """ e
and less frequent chunks L o
---------------- t FP>[e]req | addr| size|

 Hash table to track chunk information for
duplicate detection

13

Second-Phase Deduplication

» Remove duplicates from remaining less frequent chunks

» Manage full index outside enclave

* Protected by query key
« Hash table: encrypted fingerprint - encrypted chunk information

» Enclave deterministically encrypts the fingerprint of each
remaining plaintext chunk with query key

« Query full index via Ocalls

14

Experimental Setup

» Implement DEBE in C++ on Linux
 Intel SGX SDK Linux 2.7, OpenSSL 1.1.1, and Intel SGX SSL
* FastCDC, LZ4
« ~17.5K LoC

» Datasets
 Five real-world backup workloads: DOCKER, LINUX, FSL, MS, and VM

> Testbed

« Multiple machines connected with 10GbE
« Each machine has Intel Core 15-7500 3.4GHz and 32GiB RAM

15

Overall Performance

» Baselines
A400 [l Upload-Unique [] Upload-Duplicate 301 305 _ 900; 206 785
% 300 = 28= 0 646 DUpLESS [Bellare,
% 200 156 160 178 182 %600' Security’13]
(] (]] . ’
2100 . §300 TED [Li, EuroSys’20]
I s |
O DuplESS TED DEBE Plain 0" 5EBE DaE Plain e CE [Bellare, EuroCrypt13]
(a) Upload (b) Download * Plain (without encryption)

» DEBE outperforms all DaE approaches in uploads

« Upto 13.1x speedups over DUpLESS
» Avoid key generation performance overhead
* Avoid encryption and compression for duplicate data

» 8.5% download speed drops compared with DaE
« Load data into enclave for decryption and decompression

16

Speed (MiB/s)

Trace-Driven Performance

—— DEBE-Upload =—— DEBE-Download —— CE-Upload CE-Download
300 . 300 — 300 . 300 — 300
@ £ @ » A AN N
200W - 2OOW D 2OOW @ 2OOW g,
Ay —— = ~~ 2 [T T w—r—rr = AN 2 N Y e
B A e e S P &) o o ‘MAM 9
100 & 1oow 2 100N 3 100 © 100 SN o
Q a Q a
0 ? 0 “? o ? 0 “? 0
1 20 40 60 80 94 1 20 40 60 82 1 250 500 660 1 10 20 30 42 1 10 20 30
Snapshot Snapshot Snapshot Snapshot Snapshot
(a) DOCKER (b) LINUX (c) VM (d) FSL (e) MS

» DEBE outperforms CE in uploads
« FSL: 246.5-277.5 MiB/s in DEBE; 163.5-179.1 MiB/s in CE

» Download speeds of both DEBE and CE are almost identical
« Throttled by disk 1/O

17

Size (MiB)

——

20 40 60 80 94

Snapshot
(a) DOCKER

200
50
00
50

0

1
1

Storage Efficiency

_—

20 40

Snapshot

(b) LINUX

@ 20
9@ 15

N 10

—— DEBE DaE
25
5
0
1 250 500 660
Snapshot
(c) VM

Size (GIB)

—

Size (GiB)
o 0 O O,

10 20
Snapshot

(d) FSL

10 20
Snapshot

(e) MS

» In FSL, DEBE saves 93.8% of key metadata compared with DaE

« DaE: a 32-byte key for each chunk (in AES-256)

 DEBE: two long-term keys (data key and query key); a 16-byte IV for each
non-duplicate chunk

« As in traditional symmetric encryption

1.09

0.71

0.36

023 45

CE TED DEBEDEBEDEBE

128K 256K 512K

(a) DOCKER

KLD

1

0

0

2

8

A

1.05

0.73

0.34
0.22
0.09

CE TED DEBEDEBEDEBE

128K 256K 512K

(b) LINUX

KLD
O=MN WA

Security

4.48

4.08 398 1386 3.63

CE TED DEBE DEBE DEBE

128K 256K 512K
(c) VM

KLD
o = N

2.52

1.17

0.67 0.64 0.60

CE TED DEBE DEBE DEBE

128K 256K 512K

(d) FSL

(m]
-
X

3‘

2

1
0

3.00

2.06

1.45 140 1133

CE TED DEBE DEBE DEBE

128K 256K 512K

(e) MS

» Quantify frequency leakage by KLD (a.k.a., relative entropy to
uniform distribution)

« Low KLD implies high security

» Reduce KLD of TED (L, Eurosys201 by up to 87.7% in LINUX
 TED needs to store 15% more data to enhance security

19

Conclusion

» DEBE realizes DbE via Intel SGX

« Perform deduplication and compression in enclave
« Apply frequency-based deduplication
« Qutperform DaE approaches in performance, storage, and security

» See our paper and technical report for more details

» Source code: https://github.com/yzr95924/DEBE
* Received all three artifact badges

20

https://github.com/yzr95924/DEBE

