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Outsourced Storage
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➢Two primary requirements

• Storage efficiency: reduce storage overhead as much as possible

• Data confidentiality: defend against data privacy leakage

[*] https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

➢Data outsourcing is a plausible storage solution in data explosion

• Global datasphere grows to 175 ZB by 2025 

• 49% of the world’s stored data will reside in public clouds [*]



Data Deduplication

➢A space-efficient storage approach

• Unit: chunk (fixed-size or variable-size)

• Compute a fingerprint for each chunk (e.g., SHA-256)

• Manage fingerprint index to track stored chunks

• Store only one copy of duplicate chunks

• Achieve ~10x storage space savings in backup workloads [Wallace, FAST’12]
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Deduplication-after-Encryption

➢Deduplication-after-Encryption (DaE)

• Augment deduplication with encryption for data confidentiality

• Carefully encrypt chunks to preserve deduplication effectiveness on 

ciphertext chunks after encryption
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• Enable cross-user deduplication on 

ciphertext chunks

• e.g., Key = hash of plaintext chunk

• Server-aided key management

• Deploy a key server to prevent brute-force 

attacks [Bellare, Security’13]
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➢Message-locked encryption uses a key derived from chunk 

content [Bellare, EuroCrypt’13] 



Limitations of DaE

➢L1: High key management overhead

• Storage: store a key for each chunk

• Performance: key generation overhead is expensive [Ren, ATC’21]

➢L2: Incompatibility with compression

• Ciphertext chunks cannot be further compressed

• Compression before encryption → leak compressed chunk lengths [Chen, SYSTOR’21]

➢L3: Security risks

• Single point-of-attack due to centralized server-aided key management

• DaE is deterministic → vulnerable to frequency analysis [Li, EuroSys’20]
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Deduplication-before-Encryption

➢Deduplication-before-Encryption (DbE)

• We explore DbE, which performs deduplication on plaintext chunks, 

followed by encrypting non-duplicate chunks
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➢Benefits over DaE by design

• Encryption can use content-independent keys (L1 addressed)

• Compression can be applied on non-duplicate plaintext chunks after 

deduplication (L2 addressed)

• Deploying a key server for key generation is unnecessary (L3 addressed)

➢Question: how should deduplication be protected?

• DbE’s deduplication process is no longer protected by encryption



Contributions
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➢DEBE: a shielded DbE-based deduplicated storage system based 

on shielded execution

• Explore DbE with aid of Intel SGX

• Apply frequency-based deduplication for performance and security

➢Experiments show that DEBE outperforms conventional DaE 

approaches in performance, storage savings, and security

• Up to 13.1x upload speedup over DupLESS [Bellare, Security’13]

• 93.8% key metadata storage saving over DaE

• Reduce information leakage without compromising storage efficiency



Intel SGX Basics

➢SGX limitations in performance

• Enclave page cache (EPC) has limited size (e.g., 128 MiB)

• Exceeding EPC size → expensive EPC paging overhead

• ECalls and OCalls lead to context-switching overhead
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➢Enclave: secure memory region realized by Intel 

SGX

• OCalls and ECalls to interact with untrusted 

applications
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➢Challenge: How to mitigate SGX overhead in DEBE?



Overview

➢Target-based deduplication

• Protect DbE via Intel SGX

• Perform deduplication and compression over plaintext chunks in enclave

➢Communication

• Control channel: transmit commands for storage operations

• Data channel: transmit plaintext chunks to enclave

• Protected by a short-term session key shared by a client and enclave
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Main Idea

➢A small fraction of top frequent chunks 

contribute a large fraction of duplicates

• In VM, top-5% of frequent chunks contribute 

to a duplicate rate of 97%
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➢Frequency-based deduplication: separate deduplication process 

in two phases based on chunk frequencies

• First phase: Manage small fingerprint index in enclave to remove most 

duplicates → mitigate EPC paging overhead

• Second phase: Manage full index out of enclave to remove remaining few 

duplicates → reduce context-switching overhead



Architecture

➢Track frequencies of plaintext chunks

➢Frequency-based deduplication

• Remove duplicates of most frequent 

chunks

• Query full index to remove remaining 

duplicates of less frequent chunks

• Protect query information via query key
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➢Compress non-duplicate chunks and encrypt compressed chunks via 

data key



Frequency Tracking
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• Fixed memory usage with provable 

error bounds

• Divide fingerprint into r pieces for 

counting

• Nearly no extra performance 

overhead

➢Use Count-Min Sketch (CM-Sketch) to track approximate

frequency of each chunk



First-Phase Deduplication
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➢Remove duplicates from k most frequent plaintext chunks

• Expect to remove a large fraction of duplicates

➢Manage top-k index in enclave

• Limited EPC usage → O(k)

• Min-heap to differentiate the top-k-frequent 

and less frequent chunks

• Hash table to track chunk information for 

duplicate detection



Second-Phase Deduplication
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➢Remove duplicates from remaining less frequent chunks

➢Manage full index outside enclave

• Protected by query key

• Hash table: encrypted fingerprint → encrypted chunk information

➢Enclave deterministically encrypts the fingerprint of each 

remaining plaintext chunk with query key

• Query full index via Ocalls



Experimental Setup
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➢ Implement DEBE in C++ on Linux

• Intel SGX SDK Linux 2.7, OpenSSL 1.1.1, and Intel SGX SSL

• FastCDC, LZ4

• ~17.5 K LoC

➢Datasets

• Five real-world backup workloads: DOCKER, LINUX, FSL, MS, and VM

➢Testbed

• Multiple machines connected with 10GbE

• Each machine has Intel Core i5-7500 3.4GHz and 32GiB RAM



Overall Performance

➢DEBE outperforms all DaE approaches in uploads

• Up to 13.1x speedups over DupLESS

• Avoid key generation performance overhead

• Avoid encryption and compression for duplicate data

➢ 8.5% download speed drops compared with DaE

• Load data into enclave for decryption and decompression

16

➢Baselines

• DupLESS [Bellare, 

Security’13]

• TED [Li, EuroSys’20]

• CE [Bellare, EuroCrypt13]

• Plain (without encryption)



Trace-Driven Performance

➢DEBE outperforms CE in uploads

• FSL: 246.5-277.5 MiB/s in DEBE; 163.5-179.1 MiB/s in CE

➢Download speeds of both DEBE and CE are almost identical

• Throttled by disk I/O
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Storage Efficiency

➢ In FSL, DEBE saves 93.8% of key metadata compared with DaE

• DaE: a 32-byte key for each chunk (in AES-256)

• DEBE: two long-term keys (data key and query key); a 16-byte IV for each 

non-duplicate chunk

• As in traditional symmetric encryption 
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Security

➢Quantify frequency leakage by KLD (a.k.a., relative entropy to 

uniform distribution)

• Low KLD implies high security

➢Reduce KLD of TED [Li, EuroSys’20] by up to 87.7% in LINUX

• TED needs to store 15% more data to enhance security
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Conclusion

20

➢DEBE realizes DbE via Intel SGX

• Perform deduplication and compression in enclave

• Apply frequency-based deduplication

• Outperform DaE approaches in performance, storage, and security

➢See our paper and technical report for more details

➢Source code: https://github.com/yzr95924/DEBE

• Received all three artifact badges

https://github.com/yzr95924/DEBE

