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Cloud Gaming
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, "‘ XBOX Cloud Gaming
Play games anywhere and anytime



Low GPU Util. of Cloud Gaming

Video Streaming over Internet
HINNnnmnmnnmmmmmm D S— ‘ \
Network limitation
Modern GPUs * 40Mbps for 4K @ 60 FPS

Run games at 4K 60 FPS (frames/s) » 25Mbps for 1080p @ 60 FPS
* 40 ms latency

“mm

Device Limitation
e Screen resolution
HW acceleration for decoding

Dota 2 38.2% 1.61 59.9

League of Legends 26.9% 1.16 59.8 Yes
PUBG 40.6% 4.05 60 Yes
CS:GO 45.0% 2.6 201 No
Civilization 5 32.3% 1.11 59.8 Yes
Assassin’s CO 69.15% 2.39 59.6 Yes

1080p@60FPS on Nvidia RTX 2060 6.4 TFLOPS (comparable to XBOX’s cloud gaming GPU)



GPU Rendering 101

FPS: 60 GPU Utilization: 50%

a

Frame N . Frame N+1 Frame N+2 Frame N+3
CPU Game Logic (N) Game Logic (N+1) | Game Logic (N+2) | Game Logic (N+3)
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GPU R (N-1) R(N) | R(N+1) | R(N+2) *R: Render
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1. Game scenes are rendered frame by frame in a pipelined manner
2. The rendering time varies for different frames due to scene complexity
3. Idle GPU periods appear when GPU is underutilized



GPU Rendering 101

FPS: 60 GPU Utilization: 50%

How can we harvest the idle GPU periods to improve GPU utilization?
|d|el Idle l Idle l dle e
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GPU R (N-1) R(N) i R(N+1) | R(N+2) *R: Render
0O ms 16.67 ms 33.33 ms 50 ms 66.67 ms Tin:e

1. Game scenes are rendered frame by frame in a pipelined manner
2. The rendering time varies for different frames due to scene complexity
3. Idle GPU periods appear when GPU is underutilized



Run multiple games
on single GPU?

* Games are too random
e High variation of rendering time

* Frequent conflicts
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Co-location multiple games does not improve much utilization

but lead to severe FPS drop

HIT: HITMAN 3 RDR2: Red Dead Redemption 2  AOS: Ashes of Singularity




Requirements for Co-location with Games

Quickly capture idle GPU periods

Predictable workload for co-location
Quick preemption for straggler




DL Training is a Good

Choice for Co-location

GPU Memory Used (GB)
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* Deep learning training is a stable and predictable workload
* Repetitive and iterative pattern

e Stable execution time and GPU memory usage

* Fine-grained GPU kernels
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Stable iteration time and memory usage
of each iteration [Gandiva, OSDI’18]
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Stable and fine-grained GPU kernel




User input
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Pilotfish Runtime System

Design

—— Workflow
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1. Instrument rendering APIs to capture idle GPU periods
2. Fine-grained scheduling DL training kernels

3. Managing task execution to avoid potential interference




Real-time capturing idle GPU periods

Rendering commands are compiled to GPU kernels via
graphic libraries
e E.g., DirectX 12 uses ExecuteCommandLists for submission

* Present(): an async call at the end of each frame
Hook these APIs to monitor rendering task submission
Insert a Signal to notify frame completion

Do not require game modification

// Render the scene.

// Record all the commands we need to render the scene into the command Llist.

// Execute the command List.

// Present the frame.

[ )

A common procedure for game rendering
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Fine-grained Scheduling of DL operation

/| if T + kernel.duration > 33.33 ms:

Frame N Frame N+1 Wait until next SIGNAL_DONE
i Game Logic else:

CPU | Game Logic g Run (op)

SIGNAL_DONE L SIGNAL_DONE

A Train/.- A
Y
GPU | R(N-2) Render N | Train | Train | Train | 7 Render
0ms 16.67 ms 33.33ms Time

Coordinated scheduling to avoid GPU interference



DL Training Task Executor

 Straggler kernels may execute longer than expected
* Hard guarantee: preempt the DL training job immediately if next frame starts
* Soft guarantee: allow slight FPS drop (1-2 FPS) to not preempt straggler kernels

* Fast preemption: 0.7 ms preemption latency

* Using two GPU streams
* Low-priority stream runs DL training kernels
* high-priority stream only receives “asserting kernels”

Pause Signal Received; | . .
Send high priority kernelﬂ Asserting Kernel [ Model weights

Running DL Kernel l Process Stopped Resuming DL Training

Rendering Graphics (Frame ")/Ioad

Shared memory (Update per iteration) |:|/
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Avoding contention on other resources

* CPU: thread priority
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Avoding contention on other resources
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*Baymax: QoS-awareness and increased utilization for non-preemptive accelerators in warehouse scale computers



Avoding contention on other resources

* CPU: thread priority
* Disk I/0: namespace isolation and 1/O priority

* GPU memory and cache

* sum of peak GPU memory <= total GPU memory
* No observed contention on GPU cache
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*Baymax: QoS-awareness and increased utilization for non-preemptive accelerators in warehouse scale computers
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Avoding contention on other resources
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* Network and video streaming encoding
* No contention for seperated network and dedicated hardware encoder
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*Baymax: QoS-awareness and increased utilization for non-preemptive accelerators in warehouse scale computers
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Evaluation

* Game server
* |Intel i7-7700+RTX2060, Windows 10, CUDA 11, DirectX 12, PyTorch 1.8.1

e Games and DL models

Ashes of the Singularity Crazy quality on 2560*1440; FPS: 60 GPU focused benchmark
Red Dead Redemption 2 Favor performance quality on 2560*1440; FPS: 60
Shadow of the Tomb Raider High quality on 2560*1440; FPS: 60
F1 2021 Medium quality on 1920*1080; FPS: 60
HITMAN3 Ultra quality on 2560*1440; FPS: 60

ResNet-34 (RS) [28]; VGG-16 [42] ; MobileNet (MN) [29]; LSTM [43];

DL Training Dataset: ImageNet-1k, Wikitext-2
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Evaluation (cont.)

* Harvest Ratio: the percentage of idle GPU cycles harvested

GPUUtile, — GPUUtilgame
100% — GPUUtilgame

Harvest Ratio =

* Baselines:
* Windows GameMode: only prioritizing CPU of game processes
* Constant-Speed: controls the submission speed of DL kernels at a constant speed

* Adaptive-Speed: using PresentMon to adaptively control DL kernel submission
* |f FPS < 60: speed = speed/2;
e else: speed = speed*1.2.



Evaluation Result

Game FPS without co-location [ GameMode [ Constant-Speed(50%) [ Adaptive-Speed [ PilotFish

Normalized
99%e-ile FPS
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(a) The 99%-ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.

100

Harvest
Ratio (%)

Wl (TN

(b) The harvest ratio of idle GPU time of cloud games.
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Evaluation Result

Game FPS without co-location [ GameMode [ Constant-Speed(50%) [ Adaptive-Speed [ PilotFish
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(a) The §9% ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.
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(b) The harvest ratio of idle GPU time of cloud games.
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Evaluation Result

Game FPS without co-location
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(a) The 99%-ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.
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Throttling baselines also harm FPS with a low harvest ratio
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(b) The harvest ratio of idle GPU time of cloud games.
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Evaluation Result

Game FPS without co-location [ GameMode
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(a) The 99%4ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.
p PilotFish guarantees no interference to FPS with high harvest ratio
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(b) The harvest ratio of idle GPU time of cloud games.
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Source of improvement

dynamic scheduling

* Constant-Speed will not impact FPS only when its speed is £ 3%

* PilotFish harvests the idle GPU cycles as Constant-Speed(80%)
without impacting FPS
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The Red Dead Redemption 2 + ResNet34



Normailzed 99%-ile FPS

Different harvest ratios for different models

* LSTM has more long running kernels than MnasNet
* Harder to find safe scheduling opportunity for LSTM
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Soft/Hard Guanratee to Games

* Soft guarantee is useful for models with long kernels like LSTM

* Pausing is necessary for preempting straggler kernels
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Game FPS over time when co-location
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* Co-located with ResNet-34 (batch size = 8)

* The FPS drop in baselines may lead to reduced
rendering quality
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Demo

Co-location Co-location
PilotFish Game Only No Throttling

Game:

- Tom Clancy’s The Division 2
- FPSlocks at 60

- Resolution: 1920*1080

- Quality: Highest

DL Training:

- Model: ResNet-50
- Dataset: cifar-10

- Batch Size: 16

Video Link:
https://github.com/Chen-Binghao/PilotFish
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Conclusion of PilotFish

* Cloud gaming has low-utilization due to limited streaming quality on powerful GPUs

* PilotFish: harvesting free GPU cycles of cloud gaming w/ DL training
* Quickly capture GPU idle periods via APl instrumentation
* Leverage DL training’s predictability to safely schedule computation kernels
e Low-overhead pausing mechanism to prevent interference from stragglers

* PilotFish can harvest up to 85.1% idle GPU cycles without interfere to games



* Thanks.
* Please feel free to raise your questions

* Contact:
e Zhenhua Han (Zhenhua.Han@microsoft.com)



