PilotFish: Harvesting Free Cycles of Cloud
Gaming with Deep Learning Training

Wei Zhang, Binghao Chen, Zhenhua Han, Quan Chen,
Peng Cheng, Fan Yang, Ran Shu, Yuqging Yang, Minyi Guo

Microsoft

Research

Cloud Gaming

= = = = = = = = = = ——— == ———

Cloud Data Center

[}
1
1
1
1
! GPU servers or Game Consoles
1
1
1
1
1

[Coro J ||] Cere)

L _____ o[N y i
: : HIEDIED)
| i INTERNET A J | J !
[| [y N \
1 ' 1
=)
® [] 1
® - -00 .« . N J \ J
4+ o

HHEDNEI))

—-===» Control Message Low Latency Video \

__

, "‘ XBOX Cloud Gaming
Play games anywhere and anytime

Low GPU Util. of Cloud Gaming

Video Streaming over Internet
HINNnnmnmnnmmmmmm D S— ‘ \
Network limitation
Modern GPUs * 40Mbps for 4K @ 60 FPS

Run games at 4K 60 FPS (frames/s) » 25Mbps for 1080p @ 60 FPS
* 40 ms latency

“mm

Device Limitation
e Screen resolution
HW acceleration for decoding

Dota 2 38.2% 1.61 59.9

League of Legends 26.9% 1.16 59.8 Yes
PUBG 40.6% 4.05 60 Yes
CS:GO 45.0% 2.6 201 No
Civilization 5 32.3% 1.11 59.8 Yes
Assassin’s CO 69.15% 2.39 59.6 Yes

1080p@60FPS on Nvidia RTX 2060 6.4 TFLOPS (comparable to XBOX’s cloud gaming GPU)

GPU Rendering 101

FPS: 60 GPU Utilization: 50%

a

Frame N . Frame N+1 Frame N+2 Frame N+3
CPU Game Logic (N) Game Logic (N+1) | Game Logic (N+2) | Game Logic (N+3)
dle Idle Idle ldle
\ 4 ,_Hw(K—M“'
GPU R (N-1) R(N) | R(N+1) | R(N+2) *R: Render
0 ms 16.67 ms 33.33 ms 50 ms 66.67 ms Tin;e
1. Game scenes are rendered frame by frame in a pipelined manner
2. The rendering time varies for different frames due to scene complexity
3. Idle GPU periods appear when GPU is underutilized

GPU Rendering 101

FPS: 60 GPU Utilization: 50%

How can we harvest the idle GPU periods to improve GPU utilization?
|d|el Idle l Idle l dle e
— —
GPU R (N-1) R(N) i R(N+1) | R(N+2) *R: Render
0O ms 16.67 ms 33.33 ms 50 ms 66.67 ms Tin:e

1. Game scenes are rendered frame by frame in a pipelined manner
2. The rendering time varies for different frames due to scene complexity
3. Idle GPU periods appear when GPU is underutilized

Run multiple games
on single GPU?

* Games are too random
e High variation of rendering time

* Frequent conflicts

Conflict
\

Confli\ct \ Conflict

|
|
|
| |
0 ms 16.67 ms 33.33 ms 50mMs Time

GPU timeline

FPS

GPU utilization(%)

60

40-
20 -

100

(9]
o

(= HIT RDR2 i AOS|

/
1

HIT

only

RDR2 AOS
only only

HIT+RDR2 HIT+AOS RDR2+AOS

Co-location multiple games does not improve much utilization

but lead to severe FPS drop

HIT: HITMAN 3 RDR2: Red Dead Redemption 2 AOS: Ashes of Singularity

Requirements for Co-location with Games

Quickly capture idle GPU periods

Predictable workload for co-location
Quick preemption for straggler

DL Training is a Good

Choice for Co-location

GPU Memory Used (GB)

25
20
15
10

o U

* Deep learning training is a stable and predictable workload
* Repetitive and iterative pattern

e Stable execution time and GPU memory usage

* Fine-grained GPU kernels

I

i

i

J

y

I !|

sz,f i

|

il

T
|

;

15

Time (seconds)

20

Stable iteration time and memory usage
of each iteration [Gandiva, OSDI’18]

ms)

Kernel time(

o

o

o
|

0.06 -
0.04 -
0.024 .

0.00 L= F

= 2401 °

2.35=

"
N S ——
L]
L]
__c__T_"'__________"
(==]

ResNet-34 MobileNet VGG-16 LSTM

Stable and fine-grained GPU kernel

User input

Client1 Proxy (| Rendering
(_ctientt).~ proxy | 7| Renderr

Compressed

Image

2D/3D Library
(DirectX)

\

Real execution information

2D/3D | ExecuteCommandList

APls

rd

@ Game Loop Detector

Frame execution
information

Y

° ° Predict duration
I O t I S Kernel Duration >
Predictor

”[2)DL kernel scheduler

|

GPU

commands Copy

CUDA

7\
@ Task executor

DLT Ready DL kernel pool | |
Framework D soe D I:I

System

GPU Kernel
launch

Other resource ||4

Runtime

L]

GPU
SMs
buffer
Global
memory
Mem
cpy !
Kernel

Real execution information

management

Pilotfish Runtime System

Design

—— Workflow

> Control ——> Feedback

1. Instrument rendering APIs to capture idle GPU periods
2. Fine-grained scheduling DL training kernels

3. Managing task execution to avoid potential interference

Real-time capturing idle GPU periods

Rendering commands are compiled to GPU kernels via
graphic libraries
e E.g., DirectX 12 uses ExecuteCommandLists for submission

* Present(): an async call at the end of each frame
Hook these APIs to monitor rendering task submission
Insert a Signal to notify frame completion

Do not require game modification

// Render the scene.

// Record all the commands we need to render the scene into the command Llist.

// Execute the command List.

// Present the frame.

[)

A common procedure for game rendering

10

Fine-grained Scheduling of DL operation

/| if T + kernel.duration > 33.33 ms:

Frame N Frame N+1 Wait until next SIGNAL_DONE
i Game Logic else:

CPU | Game Logic g Run (op)

SIGNAL_DONE L SIGNAL_DONE

A Train/.- A
Y
GPU | R(N-2) Render N | Train | Train | Train | 7 Render
0ms 16.67 ms 33.33ms Time

Coordinated scheduling to avoid GPU interference

DL Training Task Executor

 Straggler kernels may execute longer than expected
* Hard guarantee: preempt the DL training job immediately if next frame starts
* Soft guarantee: allow slight FPS drop (1-2 FPS) to not preempt straggler kernels

* Fast preemption: 0.7 ms preemption latency

* Using two GPU streams
* Low-priority stream runs DL training kernels
* high-priority stream only receives “asserting kernels”

Pause Signal Received; | . .
Send high priority kernelﬂ Asserting Kernel [Model weights

Running DL Kernel l Process Stopped Resuming DL Training

Rendering Graphics (Frame ")/Ioad

Shared memory (Update per iteration) |:|/

12

Avoding contention on other resources

* CPU: thread priority

60 \‘\‘\ 4001
L
231 £ 300
u =
o 501
v £ 2001
454 —*— normal priority =
low priority S 100
404 - T
0 2 4
Mumber of CPU threads
(a) FPS

—e— normal priority
low priority

P—

0.0 25 50 7.5
Number of CPU threads
(b) Loading time

13

Avoding contention on other resources

= _ 4001 normal priori
55 1 \ EEDG low prio?ity N
* CPU: thread priority £50] o B
454 —&— nNorma Fiar g
. . low priorit = 100+
* PCl-e: Baymax* for PCl-e bandwidth reservation wl——F——] leeseeeit
. Number of CPU threads . Numb:a:r of CF'L.I thread:_a
* Disk I/0: namespace isolation and 1/O priority (a) FPS (v) Loading time

=
[}

60 4 70 —
= FPS
\‘\\‘\ 60 3 Loading time

4{] b __‘_‘—\—_., w
£ 50
207 o w/o BW reservation 40
BW reservation 1 ! | a0

=]
=]

FPS
=
Loading time (s)

=
L]

30
0 Y T e s 2 A
0 50 100 e 0 o er®
Ratio of memcpy latency{%) S .t
(a) PCle bus by Disk 1YO

14
*Baymax: QoS-awareness and increased utilization for non-preemptive accelerators in warehouse scale computers

Avoding contention on other resources

* CPU: thread priority
* Disk I/0: namespace isolation and 1/O priority

* GPU memory and cache

* sum of peak GPU memory <= total GPU memory
* No observed contention on GPU cache

o
L

FPS

B0

55 4
2 504
451

* PCl-e: Baymax™ for PCl-e bandwidth reservation "

60 57
40 1
20 1

ﬂ T

n__‘_‘_‘—\—u.____\\
—e— normal priority
low priority

0 2 4
Number of CPU threads
(a) FPS

—a— w/o BW reservation
BW reservation

0 50 100
Ratio of memcpy latency{%)

(a) PCle bus

*Baymax: QoS-awareness and increased utilization for non-preemptive accelerators in warehouse scale computers

Loading time(s)

400 —
—e— normal priority
300 low priority
2001
100
0.0 25 50 7.5

Number of CPU threads

(b) Loading time

70 —
O FPS
&0 O Loading time

(4]
& 50
40
30 -

o e ﬂa““'a N
(b) Disk I/O
15

Loading time (s)

Avoding contention on other resources

= _ 4001 o hormal priorit
554 \\ E?EDW low priofity 5’/
* CPU: thread priority 50 | 2200/
a5 —*— norma. p:;.ri{::rit“-‘.r E |
* PCl-e: Baymax™* for PCl-e bandwidth reservation [= "™ | *™ ..., / |
0 2 4 0.0 2.5 5.0 1.5
* Disk I/O: namespace isolation and I/O priority s o Lo e
60 K_ 70 S 70
* GPU memory and cache 0] e m { m m
 sum of peak GPU memory <= total GPU memory *0| =2 o B reservaton N o
* No observed contention on GPU cache R B0 o o
atio of memcpy latency{%) W P *
(a) PCle bus by Disk 1YO

* Network and video streaming encoding
* No contention for seperated network and dedicated hardware encoder

16
*Baymax: QoS-awareness and increased utilization for non-preemptive accelerators in warehouse scale computers

Loading time (s)

Evaluation

* Game server
* |Intel i7-7700+RTX2060, Windows 10, CUDA 11, DirectX 12, PyTorch 1.8.1

e Games and DL models

Ashes of the Singularity Crazy quality on 2560*1440; FPS: 60 GPU focused benchmark
Red Dead Redemption 2 Favor performance quality on 2560*1440; FPS: 60
Shadow of the Tomb Raider High quality on 2560*1440; FPS: 60
F1 2021 Medium quality on 1920*1080; FPS: 60
HITMAN3 Ultra quality on 2560*1440; FPS: 60

ResNet-34 (RS) [28]; VGG-16 [42] ; MobileNet (MN) [29]; LSTM [43];

DL Training Dataset: ImageNet-1k, Wikitext-2

17

Evaluation (cont.)

* Harvest Ratio: the percentage of idle GPU cycles harvested

GPUUtile, — GPUUtilgame
100% — GPUUtilgame

Harvest Ratio =

* Baselines:
* Windows GameMode: only prioritizing CPU of game processes
* Constant-Speed: controls the submission speed of DL kernels at a constant speed

* Adaptive-Speed: using PresentMon to adaptively control DL kernel submission
* |f FPS < 60: speed = speed/2;
e else: speed = speed*1.2.

Evaluation Result

Game FPS without co-location [GameMode [Constant-Speed(50%) [Adaptive-Speed [PilotFish

Normalized
99%e-ile FPS

ldddiiiild dddddad dda

(a) The 99%-ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.

100

Harvest
Ratio (%)

Wl (TN

(b) The harvest ratio of idle GPU time of cloud games.

19

Evaluation Result

Game FPS without co-location [GameMode [Constant-Speed(50%) [Adaptive-Speed [PilotFish
1.0x

Sl L dafd d

(a) The §9% ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.

No GPU throttling harvests the most cycles but hurts game FPS significantly
| I
1 |
| I
1 |
1 |
1 |
1 |
| |
1 1
1 |
?«“?‘ Jr\‘G

(b) The harvest ratio of idle GPU time of cloud games.

Normalized
99%e-ile FPS

100 ’_\’

50

Harvest
Ratio (%)
o
é_(v
g

?D‘O RD"“ 2x 501‘ ‘ﬂ

Evaluation Result

Game FPS without co-location
1.0x

[GameMode] Constant-Speed(50%) [0 Adaptive-Speed

PilotFish

Normalized
99%e-ile FPS
?E g

o
=

[NATRRERTRER

L

(il

(a) The 99%-ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.

100 7

Throttling baselines also harm FPS with a low harvest ratio

Harvest
Ratio (%)

a1

il

(b) The harvest ratio of idle GPU time of cloud games.

21

Evaluation Result

Game FPS without co-location [GameMode

] Constant-Speed(50%)

[0 Adaptive-Speed

PilotFish

1.0x =X

0.8x -

Normalized
99%e-ile FPS

c o ©
NOBR O
x X x

o
=

Ll

dadd Al

L

1l

(a) The 99%4ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.
p PilotFish guarantees no interference to FPS with high harvest ratio

100

Harvest
Ratio (%)

il

a1

W e LR\
pOSF p0° r\ Og»r\f’ QDR qpR3Y

(b) The harvest ratio of idle GPU time of cloud games.

22

Source of improvement

dynamic scheduling

* Constant-Speed will not impact FPS only when its speed is £ 3%

* PilotFish harvests the idle GPU cycles as Constant-Speed(80%)
without impacting FPS

E 1 FPS @ Harvest Ratio

o 100 ———— ——71003
£ 0.75 — P 175 o
> e B 3
(®)]

= 0.507 50 E
()} wn
N 0.251 —‘ 25 ¢
o —‘ c
€ 0.00 T

3% 4% 10% 20% 40% 60% 80% 100%PilotFish

The Red Dead Redemption 2 + ResNet34

Normailzed 99%-ile FPS

Different harvest ratios for different models

* LSTM has more long running kernels than MnasNet
* Harder to find safe scheduling opportunity for LSTM

1 FPS @ Harvest Ratio
— — — -
]
I
]
]
]
]
]
1
2k 2k 1080p 1080p 2k 2k 1080p 1080p
high Medium high medium high Medium high medium

HIT+MN HIT+LSTM

| | |
— | | |
= \ I I
= Game ([HEFHD EFE =B
_9 | | |
E' MnasNet i Wi @i
o | | |
-.u-f‘} | | >
v 0ms 16.67 ms 33.33 ms Time
5
* | : |
| | |
Game (HEWD EEm ED
| | |
‘ ‘
LSTM —) C——J)
;X X V
0 ms 16.67 ms 33.33 ms 50mMs Time

24

Soft/Hard Guanratee to Games

* Soft guarantee is useful for models with long kernels like LSTM

* Pausing is necessary for preempting straggler kernels

Normailzed 99%-ile FPS

-
=)

o
w

O
=

1 FPS R Harvest Ratio
—— (j_ i \f/l'_ —
- — 1
i |
! +40%
|
1
1
1
1
1
hard soft w/o hard soft w/o
pause pause
RDR2+RS RDR2+LSTM

Harvest Ratio (%)

25

Game FPS over time when co-location

: |] GBI NS RINT T R
M

GameMode

—— Constant-Speed(50%)
Adaptive-Speed

—— PilotFish

=
o

o
©

* Co-located with ResNet-34 (batch size = 8)

* The FPS drop in baselines may lead to reduced
rendering quality

Normailzed FPS
o
[0s]

©
N

o
o

AV

V.U UN
AY4AV4
I AIALA

AY4

N
>
g
N
>
4

| -y
I

P|IotF|sh) Game OnIy Baselme co- Iocatlon

26

Demo

Co-location Co-location
PilotFish Game Only No Throttling

Game:

- Tom Clancy’s The Division 2
- FPSlocks at 60

- Resolution: 1920*1080

- Quality: Highest

DL Training:

- Model: ResNet-50
- Dataset: cifar-10

- Batch Size: 16

Video Link:
https://github.com/Chen-Binghao/PilotFish

27

Conclusion of PilotFish

* Cloud gaming has low-utilization due to limited streaming quality on powerful GPUs

* PilotFish: harvesting free GPU cycles of cloud gaming w/ DL training
* Quickly capture GPU idle periods via APl instrumentation
* Leverage DL training’s predictability to safely schedule computation kernels
e Low-overhead pausing mechanism to prevent interference from stragglers

* PilotFish can harvest up to 85.1% idle GPU cycles without interfere to games

* Thanks.
* Please feel free to raise your questions

* Contact:
e Zhenhua Han (Zhenhua.Han@microsoft.com)

