
PilotFish: Harvesting Free Cycles of Cloud
Gaming with Deep Learning Training

Wei Zhang, Binghao Chen, Zhenhua Han, Quan Chen,
Peng Cheng, Fan Yang, Ran Shu, Yuqing Yang, Minyi Guo

1

Cloud Gaming

2

XBOX Cloud Gaming

Low GPU Util. of Cloud Gaming

1080p@60FPS on Nvidia RTX 2060 6.4 TFLOPS (comparable to XBOX’s cloud gaming GPU) 3

Modern GPUs
Run games at 4K 60 FPS (frames/s)

Network limitation
• 40Mbps for 4K @ 60 FPS
• 25Mbps for 1080p @ 60 FPS
• 40 ms latency

Video Streaming over Internet

Device Limitation
• Screen resolution
• HW acceleration for decoding

Game GPU Util. VRAM (GB) FPS Lock FPS

Dota 2 38.2% 1.61 59.9 Yes

League of Legends 26.9% 1.16 59.8 Yes

PUBG 40.6% 4.05 60 Yes

CS:GO 45.0% 2.6 201 No

Civilization 5 32.3% 1.11 59.8 Yes

Assassin’s CO 69.15% 2.39 59.6 Yes

GPU Rendering 101

4

CPU

GPU R(N)

Frame N Frame N+1

Time0 ms

R(N+1)

Frame N+2

R(N+2)

Frame N+3

16.67 ms 33.33 ms 50 ms 66.67 ms

R (N-1)

Game Logic (N) Game Logic (N+1) Game Logic (N+2) Game Logic (N+3)

……

*R: Render

Idle Idle Idle Idle

FPS: 60 GPU Utilization: 50%

1. Game scenes are rendered frame by frame in a pipelined manner
2. The rendering time varies for different frames due to scene complexity
3. Idle GPU periods appear when GPU is underutilized

GPU Rendering 101

5

CPU

GPU R(N)

Frame N Frame N+1

Time0 ms

R(N+1)

Frame N+2

R(N+2)

Frame N+3

16.67 ms 33.33 ms 50 ms 66.67 ms

R (N-1)

Game Logic (N) Game Logic (N+1) Game Logic (N+2) Game Logic (N+3)

……

*R: Render

Idle Idle Idle Idle

FPS: 60 GPU Utilization: 50%

1. Game scenes are rendered frame by frame in a pipelined manner
2. The rendering time varies for different frames due to scene complexity
3. Idle GPU periods appear when GPU is underutilized

How can we harvest the idle GPU periods to improve GPU utilization?

Run multiple games
on single GPU?

• Games are too random

• High variation of rendering time

• Frequent conflicts

HIT: HITMAN 3 RDR2: Red Dead Redemption 2 AOS: Ashes of Singularity

Co-location multiple games does not improve much utilization
but lead to severe FPS drop

Time0 ms 16.67 ms 33.33 ms 50 ms

1

1

2

2

3

3

Game 1

Game 2

Conflict

x

Conflict

x

Conflict

x

GPU timeline

6

Requirements for Co-location with Games

7

Quickly capture idle GPU periods

Predictable workload for co-location

Quick preemption for straggler

DL Training is a Good
Choice for Co-location

• Deep learning training is a stable and predictable workload

• Repetitive and iterative pattern

• Stable execution time and GPU memory usage

• Fine-grained GPU kernels

Stable iteration time and memory usage
of each iteration [Gandiva, OSDI’18]

Stable and fine-grained GPU kernel

8

PilotFish
System
Design

1. Instrument rendering APIs to capture idle GPU periods

2. Fine-grained scheduling DL training kernels

3. Managing task execution to avoid potential interference

1

2

3

9

Real-time capturing idle GPU periods

• Rendering commands are compiled to GPU kernels via
graphic libraries

• E.g., DirectX 12 uses ExecuteCommandLists for submission

• Present(): an async call at the end of each frame

• Hook these APIs to monitor rendering task submission

• Insert a Signal to notify frame completion

• Do not require game modification

// Render the scene.
void D3D1211on12::OnRender()
{

// Record all the commands we need to render the scene into the command list.
PopulateCommandList();

// Execute the command list.
ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };

m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

RenderUI();

// Present the frame.
ThrowIfFailed(m_swapChain->Present(1, 0));

MoveToNextFrame();
}

10

A common procedure for game rendering

Fine-grained Scheduling of DL operation

Game LogicCPU

GPU Render N

Frame N Frame N+1

Game Logic

Time33.33ms16.67 ms

Render

Coordinated scheduling to avoid GPU interference

SIGNAL_DONE

Train Train Train

Train

if T + kernel.duration ≥ 33.33 ms:
Wait until next SIGNAL_DONE

else:
Run(op)

?

0 ms

R (N-1)

SIGNAL_DONE

11

DL Training Task Executor

• Straggler kernels may execute longer than expected
• Hard guarantee: preempt the DL training job immediately if next frame starts

• Soft guarantee: allow slight FPS drop (1-2 FPS) to not preempt straggler kernels

• Fast preemption: 0.7 ms preemption latency
• Using two GPU streams

• Low-priority stream runs DL training kernels

• high-priority stream only receives “asserting kernels”

12

Avoding contention on other resources

• CPU: thread priority

13

Avoding contention on other resources

• CPU: thread priority

• PCI-e: Baymax* for PCI-e bandwidth reservation

• Disk I/O: namespace isolation and I/O priority

14
*Baymax: QoS-awareness and increased utilization for non-preemptive accelerators in warehouse scale computers

Avoding contention on other resources

• CPU: thread priority

• PCI-e: Baymax* for PCI-e bandwidth reservation

• Disk I/O: namespace isolation and I/O priority

• GPU memory and cache
• sum of peak GPU memory <= total GPU memory

• No observed contention on GPU cache

15
*Baymax: QoS-awareness and increased utilization for non-preemptive accelerators in warehouse scale computers

Avoding contention on other resources

• CPU: thread priority

• PCI-e: Baymax* for PCI-e bandwidth reservation

• Disk I/O: namespace isolation and I/O priority

• GPU memory and cache
• sum of peak GPU memory <= total GPU memory
• No observed contention on GPU cache

• Network and video streaming encoding
• No contention for seperated network and dedicated hardware encoder

16
*Baymax: QoS-awareness and increased utilization for non-preemptive accelerators in warehouse scale computers

Evaluation

• Game server
• Intel i7-7700+RTX2060, Windows 10, CUDA 11, DirectX 12, PyTorch 1.8.1

• Games and DL models

Benchmarks Workloads

Ashes of the Singularity Crazy quality on 2560*1440; FPS: 60 GPU focused benchmark

Red Dead Redemption 2 Favor performance quality on 2560*1440; FPS: 60

Shadow of the Tomb Raider High quality on 2560*1440; FPS: 60

F1 2021 Medium quality on 1920*1080; FPS: 60

HITMAN3 Ultra quality on 2560*1440; FPS: 60

DL Training
ResNet-34 (RS) [28]; VGG-16 [42] ; MobileNet (MN) [29]; LSTM [43];

Dataset: ImageNet-1k, Wikitext-2

17

Evaluation (cont.)

• Harvest Ratio: the percentage of idle GPU cycles harvested

• Baselines:
• Windows GameMode: only prioritizing CPU of game processes

• Constant-Speed: controls the submission speed of DL kernels at a constant speed

• Adaptive-Speed: using PresentMon to adaptively control DL kernel submission
• If FPS < 60: speed = speed/2;

• else: speed = speed*1.2.

18

Evaluation Result

19

Game FPS without co-location

Evaluation Result

No GPU throttling harvests the most cycles but hurts game FPS significantly

20

Game FPS without co-location

Evaluation Result

Throttling baselines also harm FPS with a low harvest ratio

21

Game FPS without co-location

Evaluation Result

PilotFish guarantees no interference to FPS with high harvest ratio

22

Game FPS without co-location

Source of improvement
dynamic scheduling

• Constant-Speed will not impact FPS only when its speed is ≤ 3%

• PilotFish harvests the idle GPU cycles as Constant-Speed(80%)
without impacting FPS

23

The Red Dead Redemption 2 + ResNet34

Different harvest ratios for different models

24

• LSTM has more long running kernels than MnasNet
• Harder to find safe scheduling opportunity for LSTM

Time0 ms 16.67 ms 33.33 ms

1

1

2Game

MnasNet

3

2 3

Time0 ms 16.67 ms 33.33 ms 50 ms

1

1

2Game

LSTM 11
x x √

3

√ √ √

Soft/Hard Guanratee to Games

25

• Soft guarantee is useful for models with long kernels like LSTM
• Pausing is necessary for preempting straggler kernels

+40%

Game FPS over time when co-location

• Co-located with ResNet-34 (batch size = 8)

• The FPS drop in baselines may lead to reduced
rendering quality

PilotFish Game Only Baseline co-location

26

Demo

27

Game:
- Tom Clancy’s The Division 2
- FPS locks at 60
- Resolution: 1920*1080
- Quality: Highest

DL Training:
- Model: ResNet-50
- Dataset: cifar-10
- Batch Size: 16

FP
S

Co-location
PilotFish Game Only

Co-location
No Throttling

Video Link:
https://github.com/Chen-Binghao/PilotFish

Conclusion of PilotFish

• Cloud gaming has low-utilization due to limited streaming quality on powerful GPUs

• PilotFish: harvesting free GPU cycles of cloud gaming w/ DL training
• Quickly capture GPU idle periods via API instrumentation

• Leverage DL training’s predictability to safely schedule computation kernels

• Low-overhead pausing mechanism to prevent interference from stragglers

• PilotFish can harvest up to 85.1% idle GPU cycles without interfere to games

28

• Thanks.

• Please feel free to raise your questions

• Contact:
• Zhenhua Han (Zhenhua.Han@microsoft.com)

29

