ARTIFACT ARTIFACT
EVALUATED EVALUATED

AVAILABLE

CRISP: Critical Path Analysis of
Large-Scale Microservice Architectures

Zhizh Chris) Zh , Murali Krishna Ramanathan,
anlczj T?:]cgth ”Ssrzerwzgg Prithvi Raj, Abhishek Parwal,
y and Milind Chabbi

Department of Computer Science
University of California Santa Barbara

What is microservice architecture?

Distributed system
Independent business logic -> independent programs

Communicate over well-defined APls

NS
Loosely coupled Monolith .’
Owned by small, self-contained team \1'
< @ @
8587,

Microservice NN

NININT

https://tinyurl.com/4zxbynt8

(O
O~

o

Why microservices?

e Scalable development
e Independent development
e Easier deployment

e /1% organizations adopted microservices in 2021

Microservice Challenges: Complexity

e Evolution of microservices often leads to complex interactions
e Extremely complicated to analyze

e Deeply nested

e Asynchronous

e Tens of thousands of endpoints interact with each

N ZTEN AN
\ N)
‘.'é'

other

Distributed tracing

e Jaeger: System for capturing RPC caller-callee relationships among services

e Widely deployed at Uber

e Supports multiple languages: Go, Java, Python... ."r
="

e Collect trace on sampling basis

e Retains in different storage systems «

- {

o Cassandra, Elasticsearch, memory -

https://www.jaegertracing.io/

How to pinpoint and quantify the root cause of end-to-end latency of a request?

https://www.jaegertracing.io/

Gives example visualize

|

|
i
| |
| | H
| | 13l
| | (HL L EEE
LT L TH
¥ I |
(I} b |
| ¥ I |
I il i |
(| {1 |
i N RLR il

S T T H 111 BRI RN A
(1T T T O {1111 TN
WLomien mm W b
PO AR R 4
CHTTERRELTT TN 8 S 1 . o S S | [
PR EER LR i

ITTTEE S S S T 171 FTT T AT

(LPERLULEEPEEEETERES AR W REELEL{ EEREERREIEEY

|

i

¥ (URRHTL LR RS LELEN L
b b I i
-

Our solution

Critical Path Analysis (CPA) on distributed traces
It supports:

e Top-down: service owner debuggings and optimizations
e Bottom-up: systemic analysis and optimizations

e Anomaly detection: for building automatic alerting system

Outline

e |Intro

e \What is Critical Path Analysis

e Challenges applying CPA in real data center
e CRISP design

e Top-down analysis

e Bottom-up analysis

e Anomaly detection

Critical Path Analysis (CPA)

e Technique to identify longest stretch of dependent tasks
e End-to-end latency = length (CP)
e |length (CP) = |end-to-end latency

e Naturally simplifies the complex dependency graph from distributed tracing

e How to compute: iterate backwards and recursively

CPA example

< m O 0O W

10

Challenges applying CPA on real-world traces

e “sync” (last arriver) are NOT designated events in Jaeger traces

o “Sync” needs to be inferred via timestamp

e Machine clocks are not synchronized

e Missing spans

11

Critical Path on Perfect Traces

oo W >

12

OO >

Critical Path on Real Traces

t1

t2 t3 t4 t5 t6
: y___J A
v 1t :
bt :
— . 5
A
]
25001
. o ' 20001
C is NOT on critical path! ‘51500

10001
500

0

0 1000
T(1st end) - T(2nd start) in us

e Solution: allow some degree of overlap between child endpoints

13

Design of CRISP (Critical path and Span)

Jaeger traces

=
AN

Microservices

Microservices

Trained
models

Anomaly
detection

O

&)

Collect Co-n-]pme
Critical
Traces Paths
ML model @
tralnlng Compute
N —— feature
vectors

Critical
Paths

®

Critical Path
Report

Top-Down Analysis

Flame Graph

o
()]
o
=]
e
(o
o
o
o
g
2
@
[0

15

Differential Analysis

Root cause the tail latency by diffing P50 vs. P95

Recommend developer to cache the result instead of query database

[dosa-gateway] Dosa::read
[courier-task-platform] Dosa::read +47%
[courier-task-platform] repository.dosa.get_task_completion_status
[courier-task-platform] controller.couriertaskplatform.get_task_completion_status
[courier-task-platform] handler.couriertaskplatformthrift.get_task_completion_status
[courier-task-platform] CourierTaskPlatform::getTaskCompletionStatus
[driver-presentation] CourierTaskPlatform::getTaskCompletionStatus
[driver-presentation] DriverTasks: :getDriverTasks

all

Cfulfill .marketp
[fulfillment-compatible] uber.marketp.. [fulfillment-compatible] uber
e [fulfilment-compatible] GET:/supply/{uuid}
[o.. [mp-proxy] GET:fulfillment-http
[order.. [mp-proxy] relay::mpx-prod-9

[driver.. [d.. [driver-presentation] supply.ReadSupply(Supply::readSupply)

16

Bottom-Up Analysis

1034 103
+J -t
C] C]
5 102 5 10°
0 o
o o
101* 101.
100‘ ‘ 100.
101 20 40 60 80 100 120 (140
Unique endpoints in each trace Number of unique endpoint on

Almost 10X difference!

17

Anomaly detection

e Important to detect anomaly to debug
e Auto-encoder decoder (Liu et al. ISSRE 2020)
e Use critical path as the training data instead of full graph

e Run on numerous real important services from Uber

o 200~1500 unique endpoints on each service

o 1500~11000 spans in the trace

18

Recall Improvement

recall

Liu et al. (SOTA) CRISP
service 1 0.986 0.992
service 2 0.958 0.984
service 3
service 4 0.928 0.978

service 5 0.5 0.98

service 6 0.912 0.977

Training and Inferencing Speedup

CRISP training speedup CRISP inference speedup
30 80
Q Q 60
2 20 B
3 2
" > 40
k] k]
g 10 g
E E 4
0 0

service A service B service C service A service B service C

20

Conclusion

e CRISP: critical path to analyze complex microservice traces
e Top-down for service-level insights
e Bottom-up for system-wide insights

e Anomaly detection to aid alerting systems

Available at: https://qithub.com/uber-research/CRISP

Contact: zhizhouzhang@ucsb.edu or milind@uber.com

21

https://github.com/uber-research/CRISP
mailto:zhizhouzhang@ucsb.edu
mailto:milind@uber.com

Thanks!

Questions?

