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What is microservice architecture?

Distributed system
Independent business logic -> independent programs

Communicate over well-defined APls
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Why microservices?

e Scalable development
e Independent development
e Easier deployment

e /1% organizations adopted microservices in 2021



Microservice Challenges: Complexity

e Evolution of microservices often leads to complex interactions
e Extremely complicated to analyze

e Deeply nested

e Asynchronous

e Tens of thousands of endpoints interact with each
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Distributed tracing

e Jaeger: System for capturing RPC caller-callee relationships among services

e Widely deployed at Uber

e Supports multiple languages: Go, Java, Python... ."r
="

e Collect trace on sampling basis

e Retains in different storage systems «

- {

o Cassandra, Elasticsearch, memory -

https://www.jaegertracing.io/

How to pinpoint and quantify the root cause of end-to-end latency of a request?



https://www.jaegertracing.io/

Gives example visualize
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Our solution

Critical Path Analysis (CPA) on distributed traces
It supports:

e Top-down: service owner debuggings and optimizations
e Bottom-up: systemic analysis and optimizations

e Anomaly detection: for building automatic alerting system



Outline

e |Intro

e \What is Critical Path Analysis

e Challenges applying CPA in real data center
e CRISP design

e Top-down analysis

e Bottom-up analysis

e Anomaly detection



Critical Path Analysis (CPA)

e Technique to identify longest stretch of dependent tasks
e End-to-end latency = length (CP)
e |length (CP) = |end-to-end latency

e Naturally simplifies the complex dependency graph from distributed tracing

e How to compute: iterate backwards and recursively



CPA example
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Challenges applying CPA on real-world traces

e “sync” (last arriver) are NOT designated events in Jaeger traces

o “Sync” needs to be inferred via timestamp

e Machine clocks are not synchronized

e Missing spans
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Critical Path on Perfect Traces
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Critical Path on Real Traces
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e Solution: allow some degree of overlap between child endpoints
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Design of CRISP (Critical path and Span)

Jaeger traces
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Top-Down Analysis

Flame Graph
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Differential Analysis

Root cause the tail latency by diffing P50 vs. P95

Recommend developer to cache the result instead of query database

[dosa-gateway] Dosa::read
[courier-task-platform] Dosa::read +47%
[courier-task-platform] repository.dosa.get_task_completion_status
[courier-task-platform] controller.couriertaskplatform.get_task_completion_status
[courier-task-platform] handler.couriertaskplatformthrift.get_task_completion_status
[courier-task-platform] CourierTaskPlatform::getTaskCompletionStatus
[driver-presentation] CourierTaskPlatform::getTaskCompletionStatus
[driver-presentation] DriverTasks: :getDriverTasks

all

Cfulfill .marketp
[fulfillment-compatible] uber.marketp.. [fulfillment-compatible] uber
e [fulfilment-compatible] GET:/supply/{uuid}
[o.. [mp-proxy] GET:fulfillment-http
[order.. [mp-proxy] relay::mpx-prod-9

[driver.. [d.. [driver-presentation] supply.ReadSupply(Supply::readSupply)
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Bottom-Up Analysis
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Almost 10X difference!
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Anomaly detection

e Important to detect anomaly to debug
e Auto-encoder decoder (Liu et al. ISSRE 2020)
e Use critical path as the training data instead of full graph

e Run on numerous real important services from Uber

o 200~1500 unique endpoints on each service

o 1500~11000 spans in the trace
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Recall Improvement

recall

Liu et al. (SOTA) CRISP
service 1 0.986 0.992
service 2 0.958 0.984
service 3
service 4 0.928 0.978

service 5 0.5 0.98

service 6 0.912 0.977



Training and Inferencing Speedup

CRISP training speedup CRISP inference speedup
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Conclusion

e CRISP: critical path to analyze complex microservice traces
e Top-down for service-level insights
e Bottom-up for system-wide insights

e Anomaly detection to aid alerting systems

Available at: https://qithub.com/uber-research/CRISP

Contact: zhizhouzhang@ucsb.edu or milind@uber.com
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https://github.com/uber-research/CRISP
mailto:zhizhouzhang@ucsb.edu
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Thanks!

Questions?



