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Data Reduction

• How to reduce storage cost

• General Compression 

• For usual-size files

• String-level

• Limited window

• Deduplication

• For very large files

• Chunk-level

• Global

• Both have been widely used in storage products

• Can not fully utilize data’s compressibility
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Fine-Grained deduplication

• Fine-grained deduplication

• Leverages not only identical chunks, but also similar chunks

• Introduces additional steps on post-deduplication chunks

• Detects similar chunks for an unduplicated chunk (i.e., target chunk for delta encoding)

• Reads back a similar one (an already stored chunk) as a base chunk

• Calculates delta difference between the target chunk and the base chunk

• String-level, Global
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However... What is the cost?

• Reusing data hurts locality

• Declines systems’ performance

• Fine-grained deduplication introduces a new form of data reuse

• Additional locality issues

• Gates performance of both the deduplication and the restore workflows (i.e., write & read path)

• This work aims to address these issues
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Additional locality issues #1
- Poor locality in base chunks (the write path)

• Causes:

• The distribution of base chunks’ physical positions is random

• Consecutive chunks are usually compressed together (local compression)

• Accessing the whole compression unit (e.g., container) even for only one chunk

• Results: 

• Need to read a whole container even for only one base chunk

• Inefficient I/O when reading base chunks in the write path
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Additional locality issues #2
- Poor locality in restore-required chunks (the read path)

• Causes:

• Two kinds of reference relationships

• Backup workloads – Chunks (introduced by chunk-level deduplication)

• Delta chunks – Base chunks (additionally introduced by delta encoding)

• Aggravate the fragmentation problem

• Local compression leads to a large I/O unit

• Results:

• Inefficient I/O when reading restore-required chunks in the read path
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Additional locality issues #3
- Poor locality in delta-base pairs (the read path)

• Causes:

• Traversing restore-required chunks when restoring a deduplicated backup 

• Delta chunks have dependencies, but usually are far away from their bases

• Results:

• Repeatedly accessing containers in the read path
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Solution

• Techniques to address these three additional locality issues

• Selective Delta Encoding

• Delta-friendly Data Layout

• Always-Forward-Reference Traversing and Delta Prewriting

• A fine-grained deduplication framework – MeGA
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Selective Delta Encoding

• An observation: Base chunks are not distributed evenly

• For example, in an evaluated dataset:

• 64.1% containers hold ~30 base chunks (“base-sparse containers”)

• These 64.1% containers only includes 8.31% of the total base chunks.

• Skip delta encoding if base chunks are in base-sparse containers

• Avoids reading these “inefficient” containers in the deduplication workflow
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• An observation: Base chunks are not distributed evenly
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Delta-friendly Data Layout

• Consider two kinds of reference relationship

• The “Necessary Chunks” of a backup

• The combination of a backup’s directly and indirectly referenced chunks

• The lifecycle of a chunk

• A set of backups whose "Necessary chunks" includes this chunks. 

• Lifecycle-based classification

• Avoids reading sparse containers in the restore workflow
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Always-Forward-Reference Traversing 
and Delta Prewriting
• A special path to traverse the restore-required chunks

• Promises that delta chunks always appear before their base chunks

• Rules to achieve AFR traversing

• Prewriting delta chunks

• Asymmetric I/O characteristics of backup’s/user’s storage media

• Avoids repeatedly accessing restore-required chunks/containers
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Evaluation

• Evaluated approaches

• MeGA Our proposed approach, using the three proposed techniques

• Greedy A fine-grained dedup approach with a greedy strategy

• FGD A fine-grained dedup approach with the Capping rewriting technique

• CLD A chunk-level dedup approach with Capping rewrite technique

• MFD A chunk-level dedup approach with an optimized data layout

• Datasets

Name Original Size Versions Workload Descriptions 

WEB 269 GB 100 Backups of website: news.sina.com, captured from Jun. to Sep. in 2016

CHM 279 GB 100 Source codes of Chromium project from v82.0.4066 to v85.0.4165 

SYN 1.38 TB 200 Synthetic backups by simulating file create/delete/modify operations

VMS 1.55 TB 100 Backups of an Ubuntu 12.04 Virtual Machine



Evaluations on the deduplication workflow

• Two parts:

• The backup speed and statistics about accessing disks for reading bases

• Applying several parameters for FGD and MeGA

• MeGA achieves a 4.47–34.45× higher backup speed than Greedy

• Selective Delta Encoding hugely reduces disk accessing times

• Skipping more delta encoding will lead to a better speed.
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Evaluations on Deduplication Ratio

• Breakdown of deduplication ratio

• Fine-grained dedup achieves higher dedup ratio on most datasets

• There are few similar chunks in the VMS dataset

• MeGA preserves deduplication ratio advantage

• The deduplication ratio loss caused by Selective Delta Encoding is limited



Evaluations on the restore workflow

• Two parts:

• The restore speed and statistics about accessing disks for required chunks

• MeGA achieves a 30–105× higher restore speed than Greedy. 

• Our data layout hugely reduces the restore-involved containers

• Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly 
accessing.
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Evaluations on the restore workflow

• Two parts:
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Conclusion

• Fine-grained deduplication introduces additional locality issues
• Poor locality in base chunks, restore-required chunks, and delta-base pairs

• We propose three techniques to address these issues
• Selective delta encoding

• The delta-friendly data layout

• Always-forward-reference traversing and delta prewriting

• Supported by these techniques, MeGA achieves:
• 4.47–34.45× / 30–105× higher backup/restore speed than Greedy

• Preserves fine-grained deduplication’s significant dedup ratio advantage

Thank you!
Contact: xiangyu.zou@hotmail.com


