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Data Reduction

« How to reduce storage cost

» General Compression Data Stream Searching Window
* For usual-size files ==+ 0X58 0x69 0x61 OX6E 0x67 0x79 0x75 0x20 OX5A 0x6F 0x75 0x79 075 =+
. St.rlr?g-IeV(?l Duplicate Fragment
» Limited window

 Deduplication Data Stream
» For very large files -=+/0x58]0x69 0x61 Ox6EJ0x67 0X79 Ox75| 0x69 0x61 Ox6EJ0X75 0x79 OX75|--
v v v v
* Chunk-level Hash values: 0x57a33a 0xf43582 0x57a33a 0x86538a
* Global Duplicate Chunks

Both have been widely used in storage products
Can not fully utilize data’s compressibility



Fine-Grained deduplication

 Fine-grained deduplication
 Leverages not only identical chunks, but also similar chunks
* Introduces additional steps on post-deduplication chunks

 Detects similar chunks for an unduplicated chunk (i.e., target chunk for delta encoding)

» Reads back a similar one (an already stored chunk) as a base chunk

 Calculates delta difference between the target chunk and the base chunk

« String-level, Global

Data Stream

=== Ox58|0x69 0x61 Ox6E|0OX67 0x79 0x75/0x69 0x61 OX6E|0X75 0x79 OX75|===
v v v v
Hash values: 0x57a33a 0xf43582 0x57a33a 0x86538a
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However... What 1Is the cost?

 Reusing data hurts locality
* Declines systems’ performance

! Physically Stored Chunks

File 1 | Chunk A | Chunk B | Chunk C | Chunk D | I
: | Chunk A | Chunk B | Chunk C | !
|
|

Dedup |

File 2 | Chunk A | Chunk E | Chunk C | Chunk F . | Chunk D | Chunk E | Chunk F
T ]

 Fine-grained deduplication introduces a new form of data reuse
 Additional locality issues
 Gates performance of both the deduplication and the restore workflows (i.e., write & read path)
 This work aims to address these issues



Additional locality Issues #1

- Poor locality in base chunks (the write path)

 Causes:
» The distribution of base chunks’ physical positions is random

 Consecutive chunks are usually compressed together (local compression)
 Accessing the whole compression unit (e.g., container) even for only one chunk

* Results:
» Need to read a whole container even for only one base chunk
* Inefficient I/O when reading base chunks in the write path
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Additional locality Issues #2
- Poor locality In restore-required chunks (the read path)

e Causes:

» Two Kkinds of reference relationships
» Backup workloads — Chunks (introduced by chunk-level deduplication)

 Delta chunks — Base chunks (additionally introduced by delta encoding)

» Aggravate the fragmentation problem
 Local compression leads to a large 1/0 unit

e Results:

« |nefficient I/0 when reading restore-required chunks in the read path
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Additional locality Issues #3
- Poor locality in delta-base pairs (the read path)

 Causes:
 Traversing restore-required chunks when restoring a deduplicated backup
 Delta chunks have dependencies, but usually are far away from their bases

* Results:
» Repeatedly accessing containers in the read path

RestoredBackupN | G | A | D | E | B | H ] I | J | C |

!
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Additional locality Issues #3
- Poor locality in delta-base pairs (the read path)
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Soluti

 Techniques to address these three additional locality issues
 Selective Delta Encoding

on

 Delta-friendly Data Layout
» Always-Forward-Reference Traversing and Delta Prewriting

A fine-grained deduplication framework — MeGA
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Selective Delta Encoding

» An observation: Base chunks are not distributed evenly

 For example, in an evaluated dataset:
* 64.1% containers hold ~30 base chunks (“base-sparse containers”)
» These 64.1% containers only includes 8.31% of the total base chunks.

 Skip delta encoding if base chunks are in base-sparse containers

* Avoids reading these “inefficient” containers in the deduplication workflow
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Selective Delta Encoding

» An observation: Base chunks are not distributed evenly

 For example, in an evaluated dataset:
* 64.1% containers hold ~30 base chunks (“base-sparse containers”)
» These 64.1% containers only includes 8.31% of the total base chunks.

 Skip delta encoding if base chunks are in base-sparse containers

* Avoids reading these “inefficient” containers in the deduplication workflow
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Delta-friendly Data Layout

 Consider two Kkinds of reference relationship
* The “Necessary Chunks” of a backup

* The combination of a backup’s directly and indirectly referenced chunks
 The lifecycle of a chunk
» A set of backups whose "Necessary chunks" includes this chunks.

« Lifecycle-based classification
« Avoids reading sparse containers in the restore workflow

Thelbackup | A [ B [ C [ D[ E [ F [ G |
The2"packup | A | BB | C | H | I | F | G |
The3“pbackup | A | J | C | H | I | F | G |
An order-based data layout
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Chunks indirectly referenced by the 3" backup (base chunks)
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Delta-friendly Data Layout

 Consider two Kkinds of reference relationship
* The “Necessary Chunks” of a backup

* The combination of a backup’s directly and indirectly referenced chunks
» The lifecycle of a chunk
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Always-Forward-Reference Traversing

and Delta Prewriting

A special path to traverse the restore-required chunks
» Promises that delta chunks always appear before their base chunks

* Rules to achieve AFR traversing
 Prewriting delta chunks

* Asymmetric I/O characteristics of backup’s/user’s storage media

 Avoids repeatedly accessing restore-required chunks/containers
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Evaluation

 Evaluated approaches
« MeGA  Our proposed approach, using the three proposed techniques
» Greedy A fine-grained dedup approach with a greedy strategy
« FGD A fine-grained dedup approach with the Capping rewriting technigue
« CLD A chunk-level dedup approach with Capping rewrite technique
« MFD A chunk-level dedup approach with an optimized data layout

e Datasets

Name  Original Size  \ersions Workload Descriptions

WEB 269 GB 100 Backups of website: news.sina.com, captured from Jun. to Sep. in 2016
CHM 279 GB 100 Source codes of Chromium project from v82.0.4066 to v85.0.4165
SYN 1.38TB 200 Synthetic backups by simulating file create/delete/modify operations

VMS 1.55TB 100 Backups of an Ubuntu 12.04 Virtual Machine
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Evaluations on the deduplication workflow

* Two parts:
» The backup speed and statistics about accessing disks for reading bases

« Applying several parameters for FGD and MeGA

 MeGA achieves a 4.47-34.45x higher backup speed than Greedy
« Selective Delta Encoding hugely reduces disk accessing times

« Skipping more delta encoding will lead to a better speed.
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Evaluations on the deduplication workflow

* Two parts:
» The backup speed and statistics about accessing disks for reading bases

« Applying several parameters for FGD and MeGA

 MeGA achieves a 4.47-34.45x higher backup speed than Greedy
« Selective Delta Encoding hugely reduces disk accessing times

« Skipping more delta encoding will lead to a better speed.

Read “inefficient” bases
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Evaluations on Deduplication Ratio

» Breakdown of deduplication ratio

 Fine-grained dedup achieves higher dedup ratio on most datasets
* There are few similar chunks in the VMS dataset

* MeGA preserves deduplication ratio advantage
* The deduplication ratio loss caused by Selective Delta Encoding is limited
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Evaluations on the restore workflow

* Two parts:

» The restore speed and statistics about accessing disks for required chunks
* MeGA achieves a 30-105x higher restore speed than Greedy.

 Our data layout hugely reduces the restore-involved containers

 Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly

accessing.
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Evaluations on the restore workflow

* Two parts:

» The restore speed and statistics about accessing disks for required chunks
* MeGA achieves a 30-105x higher restore speed than Greedy.
 Our data layout hugely reduces the restore-involved containers
 Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly

accessing.
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Evaluations on the restore workflow

* Two parts:

» The restore speed and statistics about accessing disks for required chunks
* MeGA achieves a 30-105x higher restore speed than Greedy.
 Our data layout hugely reduces the restore-involved containers
 Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly

accessing.
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Conclusion

 Fine-grained deduplication introduces additional locality issues
 Poor locality in base chunks, restore-required chunks, and delta-base pairs

» \WWe propose three techniques to address these issues

 Selective delta encoding
» The delta-friendly data layout
» Always-forward-reference traversing and delta prewriting

 Supported by these techniques, MeGA achieves:
o 4.47-34.45x | 30-105x higher backup/restore speed than Greedy
 Preserves fine-grained deduplication’s significant dedup ratio advantage

Thank you!

Contact: xiangyu.zou@hotmail.com



