Building a High-performance Fine-grained
Deduplication Framework for Backup
Storage with High Deduplication Ratio

Xiangyu Zou!, Wen Xial, Philip Shilane?,
Haijun Zhang!, and Xuan Wang!

"Harbin Institute of Technology, Shenzhen,; “Dell Technologies

(o AR # F L H @R A D&ALTechnologies

HH

Data Reduction

« How to reduce storage cost

» General Compression Data Stream Searching Window
* For usual-size files ==+ 0X58 0x69 0x61 OX6E 0x67 0x79 0x75 0x20 OX5A 0x6F 0x75 0x79 075 =+
. St.rlr?g-IeV(?l Duplicate Fragment
» Limited window

 Deduplication Data Stream
» For very large files -=+/0x58]0x69 0x61 Ox6EJ0x67 0X79 Ox75| 0x69 0x61 Ox6EJ0X75 0x79 OX75|--
v v v v
* Chunk-level Hash values: 0x57a33a 0xf43582 0x57a33a 0x86538a
* Global Duplicate Chunks

Both have been widely used in storage products
Can not fully utilize data’s compressibility

Fine-Grained deduplication

 Fine-grained deduplication
 Leverages not only identical chunks, but also similar chunks
* Introduces additional steps on post-deduplication chunks

 Detects similar chunks for an unduplicated chunk (i.e., target chunk for delta encoding)

» Reads back a similar one (an already stored chunk) as a base chunk

 Calculates delta difference between the target chunk and the base chunk

« String-level, Global

Data Stream

=== Ox58|0x69 0x61 Ox6E|0OX67 0x79 0x75/0x69 0x61 OX6E|0X75 0x79 OX75|===
v v v v
Hash values: 0x57a33a 0xf43582 0x57a33a 0x86538a

Duplicate Chunks

Similar Chunks

Base Chunk Target Chunk
0x67 0x79 0x75 0x75 0x79 0x75
S 1

Refer as context
0x75 Ref
Delta Chunk

However... What 1Is the cost?

 Reusing data hurts locality
* Declines systems’ performance

! Physically Stored Chunks

File 1 | Chunk A | Chunk B | Chunk C | Chunk D | I
: | Chunk A | Chunk B | Chunk C | !
|
|

Dedup |

File 2 | Chunk A | Chunk E | Chunk C | Chunk F . | Chunk D | Chunk E | Chunk F
T]

 Fine-grained deduplication introduces a new form of data reuse
 Additional locality issues
 Gates performance of both the deduplication and the restore workflows (i.e., write & read path)
 This work aims to address these issues

Additional locality Issues #1

- Poor locality in base chunks (the write path)

 Causes:
» The distribution of base chunks’ physical positions is random

 Consecutive chunks are usually compressed together (local compression)
 Accessing the whole compression unit (e.g., container) even for only one chunk

* Results:
» Need to read a whole container even for only one base chunk
* Inefficient I/O when reading base chunks in the write path

———

Backup 2

Modified chunks

(target chunks for delta encoding)
/

Chunk A

Chunk B'

Chunk C

Chunk D'

Sometime Later

Backup 1

Chunk B

Chunk C

Chunk D

\ /
Base chunks for target chunks

The workflow of deduplicating Backup 2

f

Chunk A

Chunk B'

Chunk C

Chunk D'

|

\

Read a whole container even for only one base chunk

\

ontainer

Chunk A

X

Container
} L Chunk C

Additional locality Issues #2
- Poor locality In restore-required chunks (the read path)

e Causes:

» Two Kkinds of reference relationships
» Backup workloads — Chunks (introduced by chunk-level deduplication)

 Delta chunks — Base chunks (additionally introduced by delta encoding)

» Aggravate the fragmentation problem
 Local compression leads to a large 1/0 unit

e Results:

« |nefficient I/0 when reading restore-required chunks in the read path

The 1 backup A [B |

The 2" backup A [B™ |

The 3% backup A T J

CITDTITETFTGI
CITHITITFTG]
[[CTHI[TJTF]G]|

Fine-grained

Deduplicatio

Deduplicated Data

Container 1 Container 2 Container 3
A LB I c)([Co I E 1) (CTOzEumey
Container 4 Container 5
(CEOCEE) (O EEEGY

[_]Chunksdirectly referenced by the 3° backup
:I Chunks indirectly referenced by the 3" backup (base chunks)

A(F") indicates the differences of F' relative to F

Additional locality Issues #3
- Poor locality in delta-base pairs (the read path)

 Causes:
 Traversing restore-required chunks when restoring a deduplicated backup
 Delta chunks have dependencies, but usually are far away from their bases

* Results:
» Repeatedly accessing containers in the read path

RestoredBackupN | G | A | D | E | B | H] I | J | C |

!

G AA' A D E B H I
{00 [, A, (£ (] (B)

T 1 [AC C
II()IAI |

)

Read from Read from Read from Read from Read from Read from Read from

Container 3 Container1 Container 2 Container1 Container 4 Container5 Container 1
with 1ecipe [~ Recipe of BackupN: G, A, D, E, B, H, I, J, C
Deduplicated data

Container 1 Container 2 Container 3 Container 4 Container 5

(CACE) (CICE I) Ce I @E@ymae) R IaE)]) (O JAECIAG))
[] Chunks directly referenced by backup N [_____| Chunks indirectly referenced by backup N (base chunks)

Additional locality Issues #3
- Poor locality in delta-base pairs (the read path)

 Causes:
 Traversing restore-required chunks when restoring a deduplicated backup
 Delta chunks have dependencies, but usually are far away from their bases

* Results:
» Repeatedly accessing containers in the read path

RestoredBackupN | G | A | D | E | B | H] I | J | C |

!

— G |[[AA) A LD JLE [BILHIJLT]LJJAC[LC |
.)\ JAN /) \ AN N\)\)
Read from Read from Read from Read from Read from Read from Read from
Container3 Container1 ~ Container 2 Containervl\ Container 4 Container 5 C@erl
with 1ecipe [~ Recipe of BackupN: G, A, D, E, B, H, I, J, C T Repeatedly_ accessing
Container 1
Deduplicated data
Container 1 Container 2 Container 3 Container 4 Container 5
(CACE) (CICE I) Ce I @E@ymae) R IaE)]) (O JAECIAG))
[] Chunks directly referenced by backup N [_____| Chunks indirectly referenced by backup N (base chunks)

Soluti

 Techniques to address these three additional locality issues
 Selective Delta Encoding

on

 Delta-friendly Data Layout
» Always-Forward-Reference Traversing and Delta Prewriting

A fine-grained deduplication framework — MeGA

(User Space) Chunk-Tevel Selective
S
% gi a:y Deduplication | Delta Encoding
O 1 | i
4| | ¢ T TTTTTTTTT T T T T T T, T T TTTTT T T - T
D_Ll a |
=K | Local-based Local-based Base
ggi el o I i FP Index Sketch index Cache
|] |
MU S e —
| | {Memory Offset Hash
o EI B set Has
Bq—_= Lo Table
=23
a | | IAN——————— e e ———————————
o 2! Restored |
=i \ Delta AFR
i Workload JI Prewriting [®™7 Traversing [®

———— — — — ———

P — ————————(—————

Delta-Friendly—
~ Data Layout 3

v

L]

Recipes

Selective Delta Encoding

» An observation: Base chunks are not distributed evenly

 For example, in an evaluated dataset:
* 64.1% containers hold ~30 base chunks (“base-sparse containers”)
» These 64.1% containers only includes 8.31% of the total base chunks.

 Skip delta encoding if base chunks are in base-sparse containers

* Avoids reading these “inefficient” containers in the deduplication workflow

100% o 0%
@ =
2 80% 2 30%
£ 60% a
3 % 209 (30, 8.31%)
5 40% (30, 64.19%) o
E 209 1 w 109
] o
0% : : . . © 0%
1 20 40 60 80 100 1 20 40 60 80 100
Amount of Base Chunks in Containers Amount of Base Chunks in Containers

(a) 64.1% of containers contain only (b) These 64.1% containers only in-
~3(0) base chunks. cludes 8.31% of the total base chunks.

Selective Delta Encoding

» An observation: Base chunks are not distributed evenly

 For example, in an evaluated dataset:
* 64.1% containers hold ~30 base chunks (“base-sparse containers”)
» These 64.1% containers only includes 8.31% of the total base chunks.

 Skip delta encoding if base chunks are in base-sparse containers

* Avoids reading these “inefficient” containers in the deduplication workflow

100% .
1’.£ =
@ 80%/ 5
— i
o i)
£ 60%: O
o (7]
2 40%] @
5 ° (30, 64.1%) -
65 20% W
o o

0%

1 20 40 60 80 100
Amount of Base Chunks in Containers
(a) 64.1% of containers contain only (b)

~3() base chunks.

40%

&
&2

(30, 8.31%)

°1 20 40 60 80 100
Amount of Base Chunks in Containers

These 64.1% containers only in-

cludes 8.31% of the total base chunks.

|< Segment ’|
Chunk 1 | Chunk 2 | Chunk 3 | Chunk 4
/ \ \
/ v 7 \
Base chunks / Vi \

/ “\ \
r——————_———-/ ————————— ‘e - V | P R
i Contalnegm p s < i Container n \‘

i Chunki || Chunk j i Chunk p || Chunk g

Selective Delta Encoding

» An observation: Base chunks are not distributed evenly

 For example, in an evaluated dataset:
* 64.1% containers hold ~30 base chunks (“base-sparse containers”)
» These 64.1% containers only includes 8.31% of the total base chunks.

 Skip delta encoding if base chunks are in base-sparse containers

* Avoids reading these “inefficient” containers in the deduplication workflow

100% ., 40% Segment
£ g0o.l £ |« >|
L= ¢ 2 30%
S 60%) O . .| Chunk1 | Chunk 2 | Chunk 3 /cﬁrﬁm .
o (7] 20{.}_,- {30, 831 .-"rc-:| - -
SR — 8 J - .| Its base chunkiisina
5 U . 64.1%) - - -
5 20%! o 10%; Base chunks / \ 7 \ base-sparse container
] ° O / 7 /\
) [———————— -/ ——————— Sl [t ———————— l———
Yo T y y " o J " T T i \ i
0%{™30 40 €0 80 100 0%i—735 40 6080 oo | Containeym o) | coptainern
Amount of Base Chunks in Containers Amount of Base Chunks in Containers !)) !
A ‘ ‘ . U ‘ _ ' chunki || chunkj | cnvakp || chunk g
(a) 64.1% of containers contain only (b) These 64.1% containers only in- L L —

~3() base chunks. cludes 8.31% of the total base chunks. SN——

Delta-friendly Data Layout

 Consider two Kkinds of reference relationship
* The “Necessary Chunks” of a backup

* The combination of a backup’s directly and indirectly referenced chunks
 The lifecycle of a chunk
» A set of backups whose "Necessary chunks" includes this chunks.

« Lifecycle-based classification
« Avoids reading sparse containers in the restore workflow

Thelbackup | A [B [C [D[E [F [G |
The2"packup | A | BB | C | H | I | F | G |
The3“pbackup | A | J | C | H | I | F | G |
An order-based data layout

Container 1 Container 2 Container 3

(CACBE e 1) ICEJCF1)(CeIAEIEACY)
Container 4 Container 5
(A1) ([AEYRGY)
Chunks directly referenced by the 3" backup
Chunks indirectly referenced by the 3" backup (base chunks)

Delta-friendly Data Layout

 Consider two Kkinds of reference relationship
* The “Necessary Chunks” of a backup

* The combination of a backup’s directly and indirectly referenced chunks
» The lifecycle of a chunk
» A set of backups whose "Necessary chunks" includes this chunks.

« Lifecycle-based classification
« Avoids reading sparse containers in the restore workflow

Thel*backp | A | B | C [D [E [F [G | « NC_Backupl: A,B,C,D,E, F,G
The2backup| A | BB | C | H] I | F | G | e NC_Backup2: A, B, AB’), C,A(C’),H, I, F, A(F"), G
The3%backup [A | J | C | H [I | F | G | ¢ NC_Backup3: A, J,C, H, A(H’), I, E, A(F"), G, A(G")
An order-based data layout

Container 1 Container 2 Container 3

(CAJB JCc J)(CDJCE I F1)(CEJAGIACY)
Container 4 Container 5
(CROC T AED) (3T JAEYAGY)
Chunks directly referenced by the 3" backup
Chunks indirectly referenced by the 3" backup (base chunks)

Delta-friendly Data Layout

 Consider two Kkinds of reference relationship
* The “Necessary Chunks” of a backup

* The combination of a backup’s directly and indirectly referenced chunks
» The lifecycle of a chunk
» A set of backups whose "Necessary chunks" includes this chunks.

« Lifecycle-based classification
« Avoids reading sparse containers in the restore workflow

Thel*backp | A | B | C [D [E [F [G | « NC_Backupl: A, B,C,D,E.F, G
The2backup| A | BB | C | H] I | F | G | e NC_Backup2: A, B, AB’), C,A(C’),H, I, F, A(F"), G
The3“backup [A | J | C [H | I | F | G | * NC_Backup3: A, J, C, H, A(H), L F, A(F"), G, A(G’)
An order-based data layout The delta-friendly data layout
Container 1 Container 2 Container 3 Cat.(1,1) Cat.(1,2) Cat.(1,3)
([CAICB I Cc)DL EJCF)G IABIACY) [DICEe])([B] |[AErecrIsl
Container 4 Container 5 Cat.(2,2) Cat.(2,3)
([CHOC T JaED) (C I ARG (EEVach)(CHCTEFD
Chunks directly referenced by the 3" backup m ﬁ:zt'((ﬁ".?” AGY]
Chunks indirectly referenced by the 3" backup (base chunks)

Always-Forward-Reference Traversing

and Delta Prewriting

A special path to traverse the restore-required chunks
» Promises that delta chunks always appear before their base chunks

* Rules to achieve AFR traversing
 Prewriting delta chunks

* Asymmetric I/O characteristics of backup’s/user’s storage media

 Avoids repeatedly accessing restore-required chunks/containers

" The delta-friendly data layout O
Cat.(1,1) Cat.(1,2) p Cat.(1,3)

(o) (3] J([mEIrcIrFiroey
Cat.(2,2)) Cat.(2,3)

(EENmEeY)(CEI T JAEY

Cat.(3,3)

(7 [AM[aGY)

_____ _I

Accessing columns in positive order

4

B
i

) (2) When meeting F, reload A(F") |-

(1) Prewrite A(F'") to the offset of F' from the offset of F' and decoding
__________________________ them to get F' .
| Backup Space (HDD) !

Cat.(3,3) Cat.(2,3), can{d,3) ;
1 1 1 |
(O IA®AGY ([T AR AT Cc] F G ||i

I
|
|
e e e] I

Accessing Row in reverse order

Evaluation

 Evaluated approaches
« MeGA Our proposed approach, using the three proposed techniques
» Greedy A fine-grained dedup approach with a greedy strategy
« FGD A fine-grained dedup approach with the Capping rewriting technigue
« CLD A chunk-level dedup approach with Capping rewrite technique
« MFD A chunk-level dedup approach with an optimized data layout

e Datasets

Name Original Size \ersions Workload Descriptions

WEB 269 GB 100 Backups of website: news.sina.com, captured from Jun. to Sep. in 2016
CHM 279 GB 100 Source codes of Chromium project from v82.0.4066 to v85.0.4165
SYN 1.38TB 200 Synthetic backups by simulating file create/delete/modify operations

VMS 1.55TB 100 Backups of an Ubuntu 12.04 Virtual Machine

(64}
o
o

o
o
o

[8)]
o

Backup Speed (MB/s) |
o

o

Evaluations on the deduplication workflow

* Two parts:
» The backup speed and statistics about accessing disks for reading bases

« Applying several parameters for FGD and MeGA

 MeGA achieves a 4.47-34.45x higher backup speed than Greedy
« Selective Delta Encoding hugely reduces disk accessing times

« Skipping more delta encoding will lead to a better speed.

: - ' - 500 - - ' ' 02400 - r : . 70k 2000 - - : -
MFD — FGD40 — MG20 —) MFD — FGD20 — MG30 — 2200} : - :
Greedy — FGD80 MG40 — 2400 Greedy — FGD40 MG60 — Emgg : Avg.TimeCost ¥ = Avg.TimeCost =1
.. 600 :
o —————n = = [33] .) . > 0
20 40 60 80 100 ® %720 40 60 80 100 < %, %, T, S @,
7

#-th of Backups #-th of Backups D Wy Oy » B %

(a) WEB Dataset (b) CHM Dataset (a) WEB Dataset (b) CHM Dataset

(4]
o
o

o
o
o

(&)
o

Backup Speed (MB/s) |
o

o

Evaluations on the deduplication workflow

* Two parts:
» The backup speed and statistics about accessing disks for reading bases

« Applying several parameters for FGD and MeGA

 MeGA achieves a 4.47-34.45x higher backup speed than Greedy
« Selective Delta Encoding hugely reduces disk accessing times

« Skipping more delta encoding will lead to a better speed.

Read “inefficient” bases

- - - : 500 - - - ; 02400 - - - r - . 70 02000 - - - - . ﬂ 90k %
CLD — FGD20 — MGO CLD — FGD10 — MGO Q Avg.Times i} Avg.Times —3
MFD — FGD40 — MG20 — 0 MFD — FGD20 — MG30 — 2200t : o R 1 : i
Greedy — FGD80 MG40 — %4{}0 [Greedy — FGD40 MG60 — Emgg (Avg-TimeCost . Ok%—"’ 51288 Avg.TimeCost =3 T
1) O @
#1000 gl Q81000
__ < 600 | 1 = < 600 -
re § N g 400 b i - BEN T) - 40k$ g Q00 b
1 20 40 60 80 100 @ ™ 20 40 60 80 100 < G Gy @ o < Gy Gy G
#-th of Backups #-th of Backups D Ny Yy 0, 0 0, 2 0 Ny Yy 70, %0

(a) WEB Dataset (b) CHM Dataset (a) WEB Dataset (b) CHM Dataset

Dedup,Ratio
(%)} o (%)} o
= o o = o

Evaluations on Deduplication Ratio

» Breakdown of deduplication ratio

 Fine-grained dedup achieves higher dedup ratio on most datasets
* There are few similar chunks in the VMS dataset

* MeGA preserves deduplication ratio advantage
* The deduplication ratio loss caused by Selective Delta Encoding is limited

Chunk-level Deduplication Local Compression Delta Compression
— 100 ——— 200 — — 120 ————
(4] [1] 4]
o 60 c o
| o o100} | 1 @ 60f-ft] =

g 3 2 3
D«zf NN O G o o o e B sy E»»@@fzf U7 6. R R o e i
Q ey C ey Q ey Q ey
<o An"a, G G G NS <o Ry, G G G <o An7e, Gr Gn G

(d) VMS Dataset

(a) WEB Dataset (b) CHM Dataset (c) SYN Dataset

Evaluations on the restore workflow

* Two parts:

» The restore speed and statistics about accessing disks for required chunks
* MeGA achieves a 30-105x higher restore speed than Greedy.

 Our data layout hugely reduces the restore-involved containers

 Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly

accessing.

L Greedy — FGC80

CLD — FGC20 — MGO
MFD — FGC40 — MG20 — |
MG40 —

20 40 60 80
#-th of Backups

(a) WEB Dataset

100

CLD — FGC10 — MGO
MFD — FGC20 — MG30 — -

: ‘Greedy — FGC40 MG60 —
20 40 60 80 100

#-th of Backups
(b) CHM Dataset

Av@ Involved ——1~

Avg.Read mz 3

(a) WEB Dataset

» 4400

4200}
=12007
| £1000f
& 'S 600}
2 400}
=

= 0

Avg';.lnvoived —

Avg.Read e e

(b) CHM Dataset

Evaluations on the restore workflow

* Two parts:

» The restore speed and statistics about accessing disks for required chunks
* MeGA achieves a 30-105x higher restore speed than Greedy.
 Our data layout hugely reduces the restore-involved containers
 Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly

accessing.

CLD — FGC20 —

L. MFD — FGC40 — MG20 — |
s Greedy — FGC80

Fragmentation problem

CLD — FGC10 —
MFD — FGC20 — MG30 —

MG40 — : ‘Greedy — FGC40

Av@ Involved ——1~ '

. 4400 ———————
e 54200} M Reed =
T £1200]
| £1000|

g Al
A

20 40 _ 60
#-th of Backups
(a) WEB Dataset

#-th of Backups
(b) CHM Dataset

% O@g%eo%o,
(a) WEB Dataset

(b) CHM Dataset

S 600}
£ 200] |l
Ll g :E 0 Tﬁglgg H
o Z 1. A X
Z
Go?o 0 % O, O, GO,Q %,

Evaluations on the restore workflow

* Two parts:

» The restore speed and statistics about accessing disks for required chunks
* MeGA achieves a 30-105x higher restore speed than Greedy.
 Our data layout hugely reduces the restore-involved containers
 Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly

accessing.

L Greedy — FGC80

CLD — FGC20 — MGO
MFD — FGC40 — MG20 — |
MG40 —

40 _ 60 100
#-th of Backups

(a) WEB Dataset

20 80

MGO

CLD — FGC10 —

MFD — FGC20 — MG30 — A
: ‘Greedy — FGC40 MG60 o

20 40 60 80

#-th of Backups
(b) CHM Dataset

100

Av@ Involved ——1~

y

Avg.Read === " FEE

» 4400

= 0

"—Iﬂ'_'f" e LU AL
% O@g%% OO,O G‘o@a

(a) WEB Dataset

epeatedly accessing k

4200}
=12007
| £1000f
& 'S 600}

2 400}
=

Avg';.lnvoived — 2 _

M]

7 g :
% %,

; Q
¢
s, %, %y, %, 0

(b) CHM Dataset

Conclusion

 Fine-grained deduplication introduces additional locality issues
 Poor locality in base chunks, restore-required chunks, and delta-base pairs

» \WWe propose three techniques to address these issues

 Selective delta encoding
» The delta-friendly data layout
» Always-forward-reference traversing and delta prewriting

 Supported by these techniques, MeGA achieves:
o 4.47-34.45x | 30-105x higher backup/restore speed than Greedy
 Preserves fine-grained deduplication’s significant dedup ratio advantage

Thank you!

Contact: xiangyu.zou@hotmail.com

