
Building a High-performance Fine-grained
Deduplication Framework for Backup
Storage with High Deduplication Ratio

Xiangyu Zou1, Wen Xia1, Philip Shilane2,

Haijun Zhang1, and Xuan Wang1

1
Harbin Institute of Technology, Shenzhen;

2
Dell Technologies

Data Reduction

• How to reduce storage cost

• General Compression

• For usual-size files

• String-level

• Limited window

• Deduplication

• For very large files

• Chunk-level

• Global

• Both have been widely used in storage products

• Can not fully utilize data’s compressibility

 0x58 0x69 0x61 0x6E 0x67 0x79 0x75 0x20 0x5A 0x6F 0x75 0x79 0x75

Data Stream Searching Window

Duplicate Fragment

 0x58 0x69 0x61 0x6E 0x67 0x79 0x75 0x69 0x61 0x6E 0x75 0x79 0x75

Data Stream

0x57a33a 0xf43582 0x57a33a 0x86538aHash values:

Duplicate Chunks

Fine-Grained deduplication

• Fine-grained deduplication

• Leverages not only identical chunks, but also similar chunks

• Introduces additional steps on post-deduplication chunks

• Detects similar chunks for an unduplicated chunk (i.e., target chunk for delta encoding)

• Reads back a similar one (an already stored chunk) as a base chunk

• Calculates delta difference between the target chunk and the base chunk

• String-level, Global

 0x58 0x69 0x61 0x6E 0x67 0x79 0x75 0x69 0x61 0x6E 0x75 0x79 0x75

Data Stream

0x57a33a 0xf43582 0x57a33a 0x86538aHash values:

Duplicate Chunks Similar Chunks

0x67 0x79 0x75 0x75 0x79 0x75

Base Chunk Target Chunk

0x75 Ref

Delta Chunk

Refer as context

However... What is the cost?

• Reusing data hurts locality

• Declines systems’ performance

• Fine-grained deduplication introduces a new form of data reuse

• Additional locality issues

• Gates performance of both the deduplication and the restore workflows (i.e., write & read path)

• This work aims to address these issues

Chunk A Chunk B Chunk C Chunk D

Chunk A Chunk E Chunk C Chunk F

Chunk A Chunk B Chunk C

Chunk D Chunk E Chunk F

File 1

File 2

Physically Stored Chunks

Dedup

Additional locality issues #1
- Poor locality in base chunks (the write path)

• Causes:

• The distribution of base chunks’ physical positions is random

• Consecutive chunks are usually compressed together (local compression)

• Accessing the whole compression unit (e.g., container) even for only one chunk

• Results:

• Need to read a whole container even for only one base chunk

• Inefficient I/O when reading base chunks in the write path

Chunk A Chunk B' Chunk C Chunk D'

Chunk A Chunk B Chunk C Chunk D

Backup 2

Backup 1

Sometime Later

Base chunks for target chunks

Modified chunks
(target chunks for delta encoding)

Chunk A Chunk B Chunk C Chunk D

Container Container

Chunk A Chunk B' Chunk C Chunk D'

The workflow of deduplicating Backup 2

Read a whole container even for only one base chunk

Additional locality issues #2
- Poor locality in restore-required chunks (the read path)

• Causes:

• Two kinds of reference relationships

• Backup workloads – Chunks (introduced by chunk-level deduplication)

• Delta chunks – Base chunks (additionally introduced by delta encoding)

• Aggravate the fragmentation problem

• Local compression leads to a large I/O unit

• Results:

• Inefficient I/O when reading restore-required chunks in the read path

Fine-grained
Deduplication

The 1st backup

The 2nd backup

The 3rd backup

A B C D E F G

A B' C' H I F' G

A J C H' I F' G'

A B C D E F G Δ(B') Δ(C')

H I Δ(F') J Δ(H') Δ(G')

Container 1 Container 2 Container 3

Container 4 Container 5

Chunks directly referenced by the 3rd backup

Chunks indirectly referenced by the 3rd backup (base chunks)

Δ(F') indicates the differences of F' relative to F Δ(F')

Deduplicated Data

Additional locality issues #3
- Poor locality in delta-base pairs (the read path)

• Causes:

• Traversing restore-required chunks when restoring a deduplicated backup

• Delta chunks have dependencies, but usually are far away from their bases

• Results:

• Repeatedly accessing containers in the read path

A B C D E F G Δ(A') Δ(C') H I Δ(F') J Δ(C') Δ(G')

Container 1 Container 2 Container 3 Container 4 Container 5

Chunks directly referenced by backup N Chunks indirectly referenced by backup N (base chunks)

Recipe of Backup N: G, A', D, E, B, H, I, J, C'

Deduplicated data

Restore
with recipe

G A' D E B H I J C'

G Δ(A') A D E B H I J Δ(C') C

Read from
 Container 3

Read from
 Container 1

Read from
 Container 2

Read from
 Container 1

Read from
 Container 4

Read from
 Container 5

Read from
 Container 1

Restored Backup N

Additional locality issues #3
- Poor locality in delta-base pairs (the read path)

• Causes:

• Traversing restore-required chunks when restoring a deduplicated backup

• Delta chunks have dependencies, but usually are far away from their bases

• Results:

• Repeatedly accessing containers in the read path

A B C D E F G Δ(A') Δ(C') H I Δ(F') J Δ(C') Δ(G')

Container 1 Container 2 Container 3 Container 4 Container 5

Chunks directly referenced by backup N Chunks indirectly referenced by backup N (base chunks)

Recipe of Backup N: G, A', D, E, B, H, I, J, C'

Deduplicated data

Restore
with recipe

G A' D E B H I J C'

G Δ(A') A D E B H I J Δ(C') C

Read from
 Container 3

Read from
 Container 1

Read from
 Container 2

Read from
 Container 1

Read from
 Container 4

Read from
 Container 5

Read from
 Container 1

Restored Backup N

Repeatedly accessing

Container 1

Solution

• Techniques to address these three additional locality issues

• Selective Delta Encoding

• Delta-friendly Data Layout

• Always-Forward-Reference Traversing and Delta Prewriting

• A fine-grained deduplication framework – MeGA

Backup SpaceUser Space

Workload

Chunk-level
Deduplication

Local-based
FP Index

Local-based
Sketch index

Delta-Friendly
Data Layout

Selective
Delta Encoding

AFR
Traversing

Offset Hash
Table

Delta
Prewriting

Recipes

Memory

Restored
Workload

D
ed

u
p

li
ca

ti
o
n

W
o
rk

fl
o
w

R
es

to
re

W
o
rk

fl
o
w

Base
Cache

Selective Delta Encoding

• An observation: Base chunks are not distributed evenly

• For example, in an evaluated dataset:

• 64.1% containers hold ~30 base chunks (“base-sparse containers”)

• These 64.1% containers only includes 8.31% of the total base chunks.

• Skip delta encoding if base chunks are in base-sparse containers

• Avoids reading these “inefficient” containers in the deduplication workflow

Selective Delta Encoding

• An observation: Base chunks are not distributed evenly

• For example, in an evaluated dataset:

• 64.1% containers hold ~30 base chunks (“base-sparse containers”)

• These 64.1% containers only includes 8.31% of the total base chunks.

• Skip delta encoding if base chunks are in base-sparse containers

• Avoids reading these “inefficient” containers in the deduplication workflow

Chunk 1 Chunk 2 Chunk 3 Chunk 4

Segment

Container m

Chunk i Chunk j

Container n

Chunk p Chunk q

Base chunks

Selective Delta Encoding

• An observation: Base chunks are not distributed evenly

• For example, in an evaluated dataset:

• 64.1% containers hold ~30 base chunks (“base-sparse containers”)

• These 64.1% containers only includes 8.31% of the total base chunks.

• Skip delta encoding if base chunks are in base-sparse containers

• Avoids reading these “inefficient” containers in the deduplication workflow

Chunk 1 Chunk 2 Chunk 3 Chunk 4

Segment

Container m

Chunk i Chunk j

Container n

Chunk p Chunk q

Base chunks

Its base chunk is in a
base-sparse container

Delta-friendly Data Layout

• Consider two kinds of reference relationship

• The “Necessary Chunks” of a backup

• The combination of a backup’s directly and indirectly referenced chunks

• The lifecycle of a chunk

• A set of backups whose "Necessary chunks" includes this chunks.

• Lifecycle-based classification

• Avoids reading sparse containers in the restore workflow

The 1st backup

The 2nd backup

The 3rd backup

A B C D E F G

A B' C' H I F' G

A J C H' I F' G'

A B C D E F G Δ(B') Δ(C')

H I Δ(F') J Δ(H') Δ(G')

Container 1 Container 2 Container 3

Container 4 Container 5

Chunks directly referenced by the 3rd backup

Chunks indirectly referenced by the 3rd backup (base chunks)

An order-based data layout

Delta-friendly Data Layout

• Consider two kinds of reference relationship

• The “Necessary Chunks” of a backup

• The combination of a backup’s directly and indirectly referenced chunks

• The lifecycle of a chunk

• A set of backups whose "Necessary chunks" includes this chunks.

• Lifecycle-based classification

• Avoids reading sparse containers in the restore workflow

The 1st backup

The 2nd backup

The 3rd backup

A B C D E F G

A B' C' H I F' G

A J C H' I F' G'

A B C D E F G Δ(B') Δ(C')

H I Δ(F') J Δ(H') Δ(G')

Container 1 Container 2 Container 3

Container 4 Container 5

Chunks directly referenced by the 3rd backup

Chunks indirectly referenced by the 3rd backup (base chunks)

An order-based data layout

Delta-friendly Data Layout

• Consider two kinds of reference relationship

• The “Necessary Chunks” of a backup

• The combination of a backup’s directly and indirectly referenced chunks

• The lifecycle of a chunk

• A set of backups whose "Necessary chunks" includes this chunks.

• Lifecycle-based classification

• Avoids reading sparse containers in the restore workflow

The 1st backup

The 2nd backup

The 3rd backup

A B C D E F G

A B' C' H I F' G

A J C H' I F' G'

A B C D E F G Δ(B') Δ(C')

H I Δ(F') J Δ(H') Δ(G')

Container 1 Container 2 Container 3

Container 4 Container 5

Chunks directly referenced by the 3rd backup

Chunks indirectly referenced by the 3rd backup (base chunks)

An order-based data layout

D E B FCA G

Δ(F')IH

Δ(G')Δ(H') J

Δ(B') Δ(C')

Cat.(1,1) Cat.(1,2) Cat.(1,3)

Cat.(2,2) Cat.(2,3)

Cat.(3,3)

The delta-friendly data layout

Always-Forward-Reference Traversing
and Delta Prewriting
• A special path to traverse the restore-required chunks

• Promises that delta chunks always appear before their base chunks

• Rules to achieve AFR traversing

• Prewriting delta chunks

• Asymmetric I/O characteristics of backup’s/user’s storage media

• Avoids repeatedly accessing restore-required chunks/containers

CA GIHΔ(G')Δ(H') J

Cat.(1,3)Cat.(2,3)Cat.(3,3)

User Space (SSD)

Δ(F')

(1) Prewrite Δ(F') to the offset of F'
F'

To-be-restored workload

Backup Space (HDD)

(2) When meeting F, reload Δ(F')
from the offset of F' and decoding
them to get F'

(3) Write back to the offset of F'

Always-Forward-Reference Traversing

FΔ(F')

D E B FCA G

Δ(F')IH

Δ(G')Δ(H') J

Δ(B') Δ(C')

Cat.(1,1) Cat.(1,2) Cat.(1,3)

Cat.(2,2) Cat.(2,3)

Cat.(3,3)

The delta-friendly data layout

Accessing columns in positive order

A
cc

es
si

n
g

 R
o

w
 i

n
 r

ev
er

se
 o

rd
er

Evaluation

• Evaluated approaches

• MeGA Our proposed approach, using the three proposed techniques

• Greedy A fine-grained dedup approach with a greedy strategy

• FGD A fine-grained dedup approach with the Capping rewriting technique

• CLD A chunk-level dedup approach with Capping rewrite technique

• MFD A chunk-level dedup approach with an optimized data layout

• Datasets

Name Original Size Versions Workload Descriptions

WEB 269 GB 100 Backups of website: news.sina.com, captured from Jun. to Sep. in 2016

CHM 279 GB 100 Source codes of Chromium project from v82.0.4066 to v85.0.4165

SYN 1.38 TB 200 Synthetic backups by simulating file create/delete/modify operations

VMS 1.55 TB 100 Backups of an Ubuntu 12.04 Virtual Machine

Evaluations on the deduplication workflow

• Two parts:

• The backup speed and statistics about accessing disks for reading bases

• Applying several parameters for FGD and MeGA

• MeGA achieves a 4.47–34.45× higher backup speed than Greedy

• Selective Delta Encoding hugely reduces disk accessing times

• Skipping more delta encoding will lead to a better speed.

Evaluations on the deduplication workflow

• Two parts:

• The backup speed and statistics about accessing disks for reading bases

• Applying several parameters for FGD and MeGA

• MeGA achieves a 4.47–34.45× higher backup speed than Greedy

• Selective Delta Encoding hugely reduces disk accessing times

• Skipping more delta encoding will lead to a better speed.

Read “inefficient” bases

Evaluations on Deduplication Ratio

• Breakdown of deduplication ratio

• Fine-grained dedup achieves higher dedup ratio on most datasets

• There are few similar chunks in the VMS dataset

• MeGA preserves deduplication ratio advantage

• The deduplication ratio loss caused by Selective Delta Encoding is limited

Evaluations on the restore workflow

• Two parts:

• The restore speed and statistics about accessing disks for required chunks

• MeGA achieves a 30–105× higher restore speed than Greedy.

• Our data layout hugely reduces the restore-involved containers

• Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly
accessing.

Evaluations on the restore workflow

• Two parts:

• The restore speed and statistics about accessing disks for required chunks

• MeGA achieves a 30–105× higher restore speed than Greedy.

• Our data layout hugely reduces the restore-involved containers

• Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly
accessing.

Fragmentation problem

Evaluations on the restore workflow

• Two parts:

• The restore speed and statistics about accessing disks for required chunks

• MeGA achieves a 30–105× higher restore speed than Greedy.

• Our data layout hugely reduces the restore-involved containers

• Always-Forward-Reference Traversing and Delta Prewriting avoid the repeatedly
accessing.

Repeatedly accessing

Conclusion

• Fine-grained deduplication introduces additional locality issues
• Poor locality in base chunks, restore-required chunks, and delta-base pairs

• We propose three techniques to address these issues
• Selective delta encoding

• The delta-friendly data layout

• Always-forward-reference traversing and delta prewriting

• Supported by these techniques, MeGA achieves:
• 4.47–34.45× / 30–105× higher backup/restore speed than Greedy

• Preserves fine-grained deduplication’s significant dedup ratio advantage

Thank you!
Contact: xiangyu.zou@hotmail.com

