

Clockwork Empires

Clockwork Empires

SFU

Mental Models

Realization

Mental Models

Realization

Realization

Realization

Mental Models

Realization

SFU

How do we think about parallelism?

How do we think about parallelism?

Mental Models

James

Mental Models

SFU

L1 Cache hit: ~**1-3** cycles L2 Cache hit: **10s** of cycles Main Memory Access: **100s** of cycles

L1 Cache hit: ~1-3 cycles L2 Cache hit: **10s** of cycles Main Memory Access: **100s** of cycles Cloud Access: Many many many many many cycles

Schedule Data, Not Code

What if we pick up the other end of the stick?

What if we pick up the other end of the stick?

SFU

ames

What if we pick up the other end of the stick?

SFU

Schedule Data, Not Code

Schedule Data, Not Code

SFL

Data is in Collections

Code is static

Data is dynamic

Code is static

Data is dynamic

But data never travels alone.

Collections

UBC

Collections

What is a work unit?

SFU

Collections

The smallest set of subcollections needed for processing in making forward progress in the application.

Mental Models

Realization

Mental Models

Realization

Realization Problems

Realization Problems

How do we efficiently deal with sub-collections?

Realization Problems

How do we efficiently deal with sub-collections?

How do we structure programs?

How do we efficiently deal with sub-collections?

How do we structure programs?

How do we derive schedules?

Synchronization via Scheduling (SvS)

Basic Idea:

Basic Method:

Basic Idea:

Know what data a task is going to access before it executes and use this information to make scheduling decisions.

Basic Method:

Basic Idea:

Know what data a task is going to access before it executes and use this information to make scheduling decisions.

Basic Method:

Derive a compact representation (a single bit string) of the 'space' of potential access for quick comparisons during scheduling.

SFU

Software Patterns (IMR)

Stencil Patterns

Stencil Patterns

List modification

Stencil Patterns

List modification

Tree Modification

Stencil Patterns

List modification

Tree Modification

Graph Modification

Stencil Patterns

List modification

Tree Modification

Graph Modification

... more

SFU

Programming Support

'First class' collections

'First class' collections

Actor Model

'First class' collections

Actor Model + Messages

'First class' collections

Actor Model + Messages + Queries

SFU

Mental Models

Realization

Experience

Mental Models

Realization

Experience

SFU

Experiments: spatialDictionary

Ga

Gas

SFU

SFU

				— 30.0
				— 22.5
				- 15.0
				- 7.5
				0
1	2 Clobal Look	4	8 1 ook	16
p mes	SvS	SvS Cache	d	

Future Work

SFU

Future Work

Optimized scheduling

Future Work

Optimized scheduling

Robust query support

Questions

Questions

composable

composable

quick to compute and compare

only false positives for intersection

quick to compute and compare

quick to compute and compare

Preliminary Stuff

Gaslamp Games

Preliminary Stuff

