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Cloud Computing

Age of the Cloud

◮ IT is no longer capital-intensive

◮ Commodity acquired on-demand

◮ Paid as per usage

Emerging problem

◮ Virtual machine sprawl

Standardization is the key

◮ Allow services on-demand

◮ Reduce system management costs in the software stack
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Motivating Virtual Machine Clustering

Classifying (possibly) diverse virtualized servers in a cloud into

clusters of similar virtual machines (VMs) can improve the

planning of many system management activities
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Content Similarity

◮ Refers to data similarity in the raw files

X Subset of bytes contained within images are identical

◮ Extensively studied in the context of data deduplication

Recent Findings

◮ Large-scale study of VM in a production IaaS cloud:

X Images tend to be similar to a small subset of collection.
X Computing pair-wise similarity is very expensive
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Semantic Similarity

◮ Characterizes the similarity of the software functionality.

◮ Some examples:

X Instances of same application

X Different versions of the same application

X Different applications with same goal (i.e MySQL and DB2)
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System Management Scenarios

◮ Allocation of servers to system administrators

X Administrators can manage up to 80% more servers

◮ Troubleshooting

X Identify servers with similar software stack that respond

differently to an update to find and fix possible issues

◮ Placement of virtual machines to hosts

X In-memory and storage deduplication

◮ Migration of enterprise applications across data centers

X Migration performed in batches or waves
X Minimize network transfer and re-configuration costs
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Virtual Machine Clustering

Clustering is NP-hard. Various heuristic exist.

k-means

◮ Popular technique employed in the real world

◮ Each iteration:

X Assignment Step - Distance operation (kN)
X Update Step - Merge operation (N − 1)

◮ In practice Distance and Merge operations are usually very
small

X Problems with 100 dimensions require only about 100
addition and division operations
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◮ A data center with 1000 images would have to perform 10003 similarity

operations, about 2000 years

◮ By using in-memory data structures, about 40 years
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Approximate Clustering

k-medoids

◮ k-medoids is a variant of k-means

X Restricts the cluster center to be one of the existing points

(images)
X Pair-wise similarity can be computed in advance

X Similarity computation required for all images (N2)

◮ A data center with 1000 images would have to perform 10002 similarity

operations, about 2 years

◮ By using in-memory data structures, about 15 days
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Solution Idea: Asymmetric Clustering

Coriolis’ tree-based clustering

◮ Coriolis’ clustering approach involves constructing a tree

X The tree is constructed by adding images to it one by one

X Each node of the tree is either a cluster of images or a

single image
X Each level in the tree represents a minimum extent of

similarity within a node
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Coriolis’ Tree-based Clustering
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Coriolis’ tree-based clustering

Two key ideas

◮ Speed up similarity computation

X An asymmetric similarity function S: Coverage offered by a
larger node B (typically a cluster) to a new node A

S =
wt(A ∩ B)

min(wt(A),wt(B))

◮ Reuse similarity computations

X We only compute the similarity of the new image to each

children of the nodes where the image has been merged
X Similarity and Merge operations are proportional to the

depth of the tree
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D,E,F

A,B,F C,D,E

C,EA B,F D

C E

S > 0.5

S = 1.0 B F

S > 0.9

S >= 0

Which clusters are formed with similarity greater than 0.5?
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Scalability Evaluation

Experimental Setup

◮ We used VM images from 2 production data centers

X 9 images from a large-scale enterprise data center at IBM

X 12 images from the Computer Science department’s small
scale data center at FIU

X We randomly sampled files contained in 3 of the 21 images

and generated new synthetic images

17 / 21



Introduction Virtual Machine Similarity Clustering Techniques Evaluation Related Work Summary Questions

Scalability of k-medoids and Tree-based Clustering
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Related Work

Finding Similar Clusters

◮ VMFlock: Virtual Machine Co-migration for the Cloud[IEEE/ACM

HPDC’11]

X Applies standard de-duplication techniques for images

X Eliminate raw data duplicates across a given set of VM images

X It does not tackle identifying images with high redundancy or

leveraging semantic similarity
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Conclusions and Future Work

Conclusions

◮ We described different types of similarity metrics for VMs and
their use to aid administrators in their management activities

◮ We argued that state-of-the-art k-medoids clustering algorithm
incurs quadratic complexity infeasible for cloud scale data

centers

◮ We described the Coriolis framework and system specifically
designed for scalable clustering of VM images while supporting

arbitrary similarity metrics

Future Work

◮ Our future work will explore the utility of Coriolis for data center

administrator allocation, troubleshooting, and large-scale VM
migration
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Thank you!

(I’ll be happy to take questions)
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