ual Machine Similarity

Clustering Technique

es Evaluation

n Related Work

nary Questio

Coriolis: Scalable VM Clustering in Clouds

Daniel Campello¹ <dcamp020@fiu.edu> Carlos Crespo¹ Akshat Verma² Raju Rangaswami¹ Praveen Jayachandran²

> ¹School of Computing and Information Sciences Florida International University

²IBM Research - India

		× .	
	_		
		V	
		_	
		-	
	_		

irtual Machine Similarity

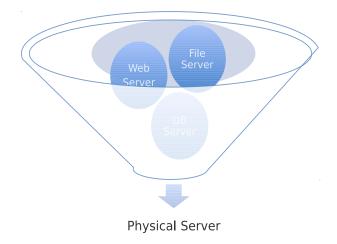
Clustering Technique

Evaluation R

Related Work

Question

The Benefits of Virtualization



irtual Machine Similarity

lustering Technique

Evaluation R

Related Work

Questions

Virtualization in Data Centers

rtual Machine Similarity

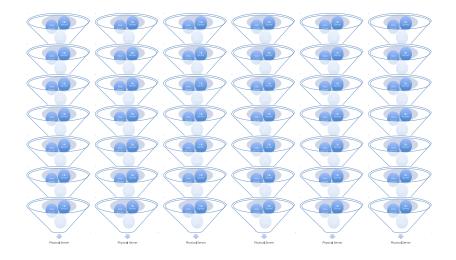
Clustering Techniques

luation Rela

elated Work S

Questions

Virtualization in Data Centers



rtual Machine Similarity

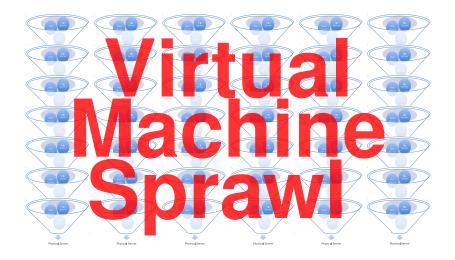
Clustering Techniques

uation Rela

ed Work Summa

Questions

Virtualization in Data Centers



Evaluation

Related Work

Questions

Cloud Computing

Age of the Cloud

- IT is no longer capital-intensive
- Commodity acquired on-demand
- Paid as per usage

Evaluation

Related Work

Questions

Cloud Computing

Age of the Cloud

- ▶ IT is no longer capital-intensive
- Commodity acquired on-demand
- Paid as per usage

Emerging problem

Virtual machine sprawl

Evaluation

Related Work

Question

Cloud Computing

Age of the Cloud

- IT is no longer capital-intensive
- Commodity acquired on-demand
- Paid as per usage

Emerging problem

Virtual machine sprawl

Standardization is the key

- Allow services on-demand
- Reduce system management costs in the software stack

Clustering Techniques

Evaluation

Related Work

nmary Ques

Motivating Virtual Machine Clustering

Classifying (possibly) diverse virtualized servers in a cloud into clusters of *similar* virtual machines (VMs) can improve the planning of many system management activities

Outline

Virtual Machine Similarity

- Content
- Semantic
- Use Cases
- 3 **Clustering Techniques**
 - k-means and k-medoids
 - Coriolis' tree-based
- **Evaluation** 4
- **Related Work** 5

Summary 6

Content Similarity

000

Refers to data similarity in the raw files

Subset of bytes contained within images are identical \checkmark

Evaluation I

Related Work

Question

Content Similarity

000

- Refers to data similarity in the raw files
 - ✓ Subset of bytes contained within images are identical
- Extensively studied in the context of data deduplication

Evaluation

Related Work

Question

Content Similarity

- Refers to data similarity in the raw files
 - $\checkmark\,$ Subset of bytes contained within images are identical
- Extensively studied in the context of data deduplication

Recent Findings

Large-scale study of VM in a production laaS cloud:

Evaluation

Related Work

Question

Content Similarity

- Refers to data similarity in the raw files
 - ✓ Subset of bytes contained within images are identical
- Extensively studied in the context of data deduplication

Recent Findings

- ► Large-scale study of VM in a production laaS cloud:
 - ✓ Images tend to be similar to a small subset of collection.

Evaluation

Related Worl

y Questio

Content Similarity

- Refers to data similarity in the raw files
 - $\checkmark\,$ Subset of bytes contained within images are identical
 - Extensively studied in the context of data deduplication

Recent Findings

- ► Large-scale study of VM in a production laaS cloud:
 - ✓ Images tend to be similar to a small subset of collection.
 - ✓ Computing pair-wise similarity is very expensive

Semantic Similarity

Characterizes the similarity of the software functionality.

Evaluation

Related Work

y Questio

Semantic Similarity

- Characterizes the similarity of the software functionality.
- Some examples:
 - ✓ Instances of same application
 - ✓ Different versions of the same application
 - ✓ Different applications with same goal (i.e MySQL and DB2)

000

Harnessing Image Similarity

- Allocation of servers to system administrators
 - ✓ Administrators can manage up to 80% more servers

Evaluation

Related Work

Questions

Harnessing Image Similarity

- Allocation of servers to system administrators
 - ✓ Administrators can manage up to 80% more servers
- Troubleshooting
 - ✓ Identify servers with similar software stack that respond differently to an update to find and fix possible issues

Evaluation

Related Work

Question

Harnessing Image Similarity

- Allocation of servers to system administrators
 - ✓ Administrators can manage up to 80% more servers
- Troubleshooting
 - ✓ Identify servers with similar software stack that respond differently to an update to find and fix possible issues
- Placement of virtual machines to hosts
 - In-memory and storage deduplication

Evaluation

n Related Worl

ary Questi

Harnessing Image Similarity

- Allocation of servers to system administrators
 - $\checkmark~$ Administrators can manage up to 80% more servers
- Troubleshooting
 - Identify servers with similar software stack that respond differently to an update to find and fix possible issues
- Placement of virtual machines to hosts
 - \checkmark In-memory and storage deduplication
- Migration of enterprise applications across data centers
 - Migration performed in batches or waves
 - Minimize network transfer and re-configuration costs

Evaluation

Related Work Su

Question

Virtual Machine Clustering

Clustering is NP-hard. Various heuristic exist.

Evaluation

Related Work

Question

Virtual Machine Clustering

Clustering is NP-hard. Various heuristic exist.

k-means

Popular technique employed in the real world

Evaluation

n Related Work

/ Question

Virtual Machine Clustering

Clustering is NP-hard. Various heuristic exist.

k-means

- Popular technique employed in the real world
- Each iteration:
 - ✓ Assignment Step Distance operation (kN)
 - ✓ Update Step Merge operation (N 1)

Evaluation

Related Work

Question

Virtual Machine Clustering

Clustering is NP-hard. Various heuristic exist.

k-means

- Popular technique employed in the real world
- Each iteration:
 - ✓ Assignment Step Distance operation (kN)
 - ✓ Update Step Merge operation (N 1)
- In practice Distance and Merge operations are usually very small

Evaluation

ion Related Wo

nary Quest

Virtual Machine Clustering

Clustering is NP-hard. Various heuristic exist.

k-means

- Popular technique employed in the real world
- Each iteration:
 - ✓ Assignment Step Distance operation (kN)
 - ✓ Update Step Merge operation (N 1)
- In practice *Distance* and *Merge* operations are usually very small
 - Problems with 100 dimensions require only about 100 addition and division operations

Introduction Virtual Machine Similarity Clustering Techniques Evaluation Related Work Summary Questions

Virtual Machine Clustering

• Distance can be calculated as $1 - SIM(I_i, I_j)$

$$SIM(I_i, I_j) = \frac{wt(I_i \cap I_j)}{wt(I_i \cup I_j)}$$

Introduction Virtual Machine Similarity Clustering Techniques Evaluation Related Work Summary Questions

Virtual Machine Clustering

• Distance can be calculated as $1 - SIM(I_i, I_j)$

$$SIM(I_i, I_j) = \frac{wt(I_i \cap I_j)}{wt(I_i \cup I_j)}$$

• Merge can be calculated as $(I_i \cup I_j)$

es Evaluation

ation Related Work

ary Questi

Virtual Machine Clustering

• Distance can be calculated as $1 - SIM(I_i, I_j)$

$$SIM(I_i, I_j) = \frac{wt(I_i \cap I_j)}{wt(I_i \cup I_j)}$$

• Merge can be calculated as $(I_i \cup I_j)$

Image Size	Similarity (Content)	Merge
8.8 GB	45.5 sec	14.7 sec
12.3 GB	75.2 sec	24.1 sec
13.6 GB	98.5 sec	31.2 sec
16.3 GB	142.3 sec	44.2 sec
19.7 GB	172.2 sec	53.5 sec
22.1 GB	232.7 sec	64.9 sec

Virtual Machine Clustering

Distance can be calculated as $1 - SIM(I_i, I_i)$

$$SIM(I_i, I_j) = \frac{wt(I_i \cap I_j)}{wt(I_i \cup I_j)}$$

Merge can be calculated as $(I_i \cup I_j)$

Image Size	Similarity (Content)	Merge	
8.8 GB	45.5 sec	14.7 sec	
12.3 GB	75.2 sec	24.1 sec	
13.6 GB	98.5 sec	31.2 sec	
16.3 GB	142.3 sec	44.2 sec	
19.7 GB	172.2 sec	53.5 sec	
22.1 GB	232.7 sec	64.9 sec	

- A data center with 1000 images would have to perform 1000³ similarity operations, about 2000 years
- By using in-memory data structures, about 40 years

Evaluation F

Related Work

Question

Approximate Clustering

k-medoids

- k-medoids is a variant of k-means
 - Restricts the cluster center to be one of the existing points (images)
 - Pair-wise similarity can be computed in advance
 - \checkmark Similarity computation required for all images (N^2)

Evaluation F

Related W

nary Quest

Approximate Clustering

k-medoids

- k-medoids is a variant of k-means
 - Restricts the cluster center to be one of the existing points (images)
 - ✓ Pair-wise similarity can be computed in advance
 - \checkmark Similarity computation required for all images (N²)
- A data center with 1000 images would have to perform 1000² similarity operations, about 2 years
- By using in-memory data structures, about 15 days

Clustering Techniques

ion Related

d Work Summa

Questions

Solution Idea: Asymmetric Clustering

Coriolis' tree-based clustering

Coriolis' clustering approach involves constructing a tree

Clustering Techniques

ation Relate

k Summary

Questions

Solution Idea: Asymmetric Clustering

Coriolis' tree-based clustering

- Coriolis' clustering approach involves constructing a tree
 - $\checkmark\,$ The tree is constructed by adding images to it one by one

Clustering Techniques

luation Rela

ed Work Summa

Questions

Solution Idea: Asymmetric Clustering

Coriolis' tree-based clustering

- Coriolis' clustering approach involves constructing a tree
 - ✓ The tree is constructed by adding images to it one by one
 - ✓ Each node of the tree is either a cluster of images or a single image

Clustering Techniques

uation Rela

Work Summary

Questions

Solution Idea: Asymmetric Clustering

Coriolis' tree-based clustering

Coriolis' clustering approach involves constructing a tree

- $\checkmark\,$ The tree is constructed by adding images to it one by one
- ✓ Each node of the tree is either a cluster of images or a single image
- ✓ Each level in the tree represents a minimum extent of similarity within a node

tual Machine Similarity

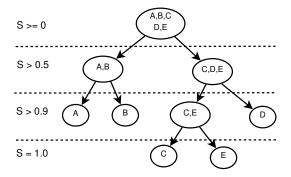
Clustering Techniques

aluation Re

elated Work Si

Questions

Coriolis' Tree-based Clustering



luation Rela

ed Work Sumn

Questions

Coriolis' tree-based clustering

Two key ideas

Speed up similarity computation

valuation Re

Related Work

Question

Coriolis' tree-based clustering

- Speed up similarity computation
 - ✓ An asymmetric similarity function S: Coverage offered by a larger node B (typically a cluster) to a new node A

valuation Re

Related Work

Questions

Coriolis' tree-based clustering

- Speed up similarity computation
 - ✓ An asymmetric similarity function S: Coverage offered by a larger node B (typically a cluster) to a new node A

$$S = \frac{wt(A \cap B)}{min(wt(A), wt(B))}$$

Evaluation R

Related Work

Question

Coriolis' tree-based clustering

Two key ideas

- Speed up similarity computation
 - ✓ An asymmetric similarity function S: Coverage offered by a larger node B (typically a cluster) to a new node A

$$S = \frac{wt(A \cap B)}{min(wt(A), wt(B))}$$

Reuse similarity computations

Evaluation R

Related Wo

y Questio

Coriolis' tree-based clustering

- Speed up similarity computation
 - ✓ An asymmetric similarity function S: Coverage offered by a larger node B (typically a cluster) to a new node A

$$S = \frac{wt(A \cap B)}{min(wt(A), wt(B))}$$

- Reuse similarity computations
 - ✓ We only compute the similarity of the new image to each children of the nodes where the image has been merged

Evaluation R

Related Work

Question

Coriolis' tree-based clustering

- Speed up similarity computation
 - ✓ An asymmetric similarity function S: Coverage offered by a larger node B (typically a cluster) to a new node A

$$S = \frac{wt(A \cap B)}{min(wt(A), wt(B))}$$

- Reuse similarity computations
 - ✓ We only compute the similarity of the new image to each children of the nodes where the image has been merged
 - ✓ Similarity and Merge operations are proportional to the depth of the tree

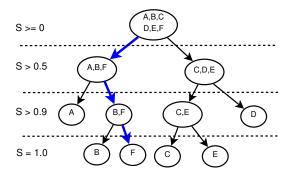
Introduction Virtual Machine Similarity Clustering Techniques Evalu

aluation Rela

ated Work Sumr

Questions

Clustering a new Image F

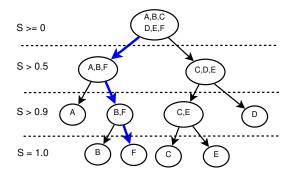


Introduction Virtual Machine Similarity Clustering Techniques Evaluation Related V

Work Summary

Questions

Clustering a new Image F



Which clusters are formed with similarity greater than 0.5?

tual Machine Similarity

Clustering Techniques

Evaluation Rela

ed Work Sum

Questions

Scalability Evaluation

Experimental Setup

We used VM images from 2 production data centers

tual Machine Similarity

Clustering Techniques

Evaluation Rela

ed Work Sumn

Questions

Scalability Evaluation

Experimental Setup

- ► We used VM images from 2 production data centers
 - \checkmark 9 images from a large-scale enterprise data center at IBM

ual Machine Similarity

Clustering Techniques

Evaluation Re

elated Work

Questions

Scalability Evaluation

Experimental Setup

- We used VM images from 2 production data centers
 - ✓ 9 images from a large-scale enterprise data center at IBM
 - 12 images from the Computer Science department's small scale data center at FIU

al Machine Similarity

Clustering Techniques

Evaluation F

Related Work

Question

Scalability Evaluation

Experimental Setup

- We used VM images from 2 production data centers
 - \checkmark 9 images from a large-scale enterprise data center at IBM
 - 12 images from the Computer Science department's small scale data center at FIU
 - ✓ We randomly sampled files contained in 3 of the 21 images and generated new synthetic images

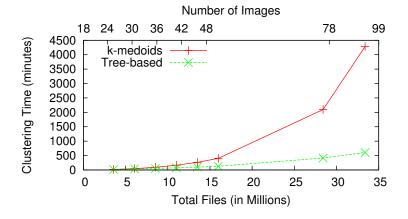
Clustering Techniques

Evaluation Re

d Work Summary

Questions

Scalability of k-medoids and Tree-based Clustering



luation Re

Related Work Summary

Questions

Related Work

Finding Similar Clusters

- VMFlock: Virtual Machine Co-migration for the Cloud[IEEE/ACM HPDC'11]
 - \checkmark Applies standard de-duplication techniques for images
 - $\checkmark~$ Eliminate raw data duplicates across a given set of VM images
 - ✓ It does not tackle identifying images with high redundancy or leveraging semantic similarity

luation Rela

lated Work S

Questions

Conclusions and Future Work

Conclusions

 We described different types of similarity metrics for VMs and their use to aid administrators in their management activities

ation Relat

ated Work Su

Questions

Conclusions and Future Work

Conclusions

- We described different types of similarity metrics for VMs and their use to aid administrators in their management activities
- We argued that state-of-the-art k-medoids clustering algorithm incurs quadratic complexity infeasible for cloud scale data centers

Evaluation Re

Related Work

Question

Conclusions and Future Work

Conclusions

- We described different types of similarity metrics for VMs and their use to aid administrators in their management activities
- We argued that state-of-the-art k-medoids clustering algorithm incurs quadratic complexity infeasible for cloud scale data centers
- We described the *Coriolis* framework and system specifically designed for scalable clustering of VM images while supporting arbitrary similarity metrics

aluation Re

Related Work

Question

Conclusions and Future Work

Conclusions

- We described different types of similarity metrics for VMs and their use to aid administrators in their management activities
- We argued that state-of-the-art k-medoids clustering algorithm incurs quadratic complexity infeasible for cloud scale data centers
- We described the *Coriolis* framework and system specifically designed for scalable clustering of VM images while supporting arbitrary similarity metrics

Future Work

 Our future work will explore the utility of *Coriolis* for data center administrator allocation, troubleshooting, and large-scale VM migration

Evaluation

elated Work

Questions

Thank you!

(I'll be happy to take questions)

