Optimizing Every Operation In
a Write-Optimized File System

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,
Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif Walsh, Michael Bender,
Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, Donald E. Porter

Stony Brook University, Facebook, Two Sigma, Rutgers University,
Massachusetts Institute of Technology

BetrFS goal:
High-performance, general-purpose file system

Need to perform well on many operations:

* Sequential reads

* Sequential writes

* Random writes

* File/directory renames
* File deletes

* Recursive scans

* Metadata updates

Some operations seem to require a trade-off

sequential

log
structured

= sSCans l

°
° full-path
o indexing

update-in-place

inodes

Full-path indexing yields fast directory scans

E Example: grep -r “key” /home/rob/doc/
3

disk
head

/home/rob/doc

/home/rob/doc/latex
/home/rob/doc/latex/a.tex

/home/rob/doc/latex/b.tex
/home/rob/doc/bar.c
/home/rob/local

Directory Tree (logical) Disk (physical)

Rename Is expensive when using full-path indexing

Example: mv /home/rob/doc/latex /home/rob

/home/rob/doc

/home/rob/doc/latex
/home/rob/doc/latex/a.tex

/home/rob/doc/latex/b.tex
/home/rob/doc/bar.c
/home/rob/local

/home/rob/latex
/home/rob/latex/a.tex
/home/rob/latex/b.tex

Directory Tree (logical) Disk (physical)

This trade-off affects real performance

* Ext4 uses inodes
* BetrFS uses full-path indexing

Time (sec)

o

401

w
o
I

N
O
!

=
o
!

Grep linux source
50 -

15x faster

| ‘

directory
scans

extd4

BetrFS

Lower IS better

Time (sec)

Rename linux source

25+

20+

=
Ul
|

[
o
|

un
I

0

extd

BetrFS

Lower IS better

Orders of
magnitude
slower
renames

BetrFS and ext4 represent different trade-offs
between directory scan and rename performance

Outline

* Zoning: a technique for fast renames + scans
* Other contributions (sketch)
* Evaluation

Zoning: balancing indirection and locality

Scan cost

~

Rename cost

Indirection

Zones

Locality

Zone: a subtree of the directory hierarchy

e Partition file system into zones
e Use full-path indexing within zones
e Use inodes between zones

Implication: Recursive
directory scans only
perform seeks when

crossing zones

Moving the root of a zone Is cheap

Example:
E mv /home/rob/video/1.mp4 /home/rob/doc
=
2
N 5%7@0
3
VANS '
Z S
Zone 0 Zone 2

Zone 1

Renaming a subtree of a zone requires copying

Example:
mv /home/rob/doc/latex /home/rob/latex

Managing zone sizes

Large zones — fast directory scans
Small zones — fast renames

We can keep zone sizes in a “sweet
spot” by splitting large zones and
merging small zones

How big should zones be?

Cost of renaming

Recursive Directory Schn (grep -r) via copy name
L)
7 * ® < & & < 150 -
w = —o— Best case
6 =100+
CIE.) p —e— \Norst case
K
|_5_ i X T X |: 50_
mee® S — i o=
I I I I I I I I ? O_ I T I I I T T T /r T |
P K L L X X X XXX wY N K N K Q Q Q Q % %
Zone Size (KiB) - log scale Zone SizFLOSt of renaming
root of a zone

BetrFS-0.2 uses 512KB zones to balance
rename and scan performance

Other contributions

Late-binding journal Sequential write

120N -
Fast sequential writes

with full data journaling

o WIS

0
o
/

Throughput (MB/sec)
TN o
o o

N
o
|

See paper for detalls

BetrFS-0.1 BetrFS-0.2 ext4d

Rangecast delete

Time (sec)

101

f

File delete

Linear in size of file

—i— ext4

el BetrFS-0.1
——tlp— BetrFS-0.2

Constant latency,
about 30% faster than ext4

1000

File size (MB)

10000

s BetrFS still fast at other
operations?

Throughput (MB/sec)

0.14+

0.121

o o o =

e o @) o o

N =~ N 00 —
| | | | |

Random writes

BetrFS still performs
random writes orders of
magnitude faster than
other file systems

o

BetrFS-0.1 BetrFS-0.2 extd

File creation

100000 etrFS still has metadata
= updates almost 100x
o faster than ext4
w
Ko
T
— 10000
-

Zone splits
> 1000 BetrFS-0.1
(o BetrFS-0.2
E ext4
-
O

1OOJ

0 1000000 2000000 3000000

What about real application
performance?

Macrobenchmark: git

25+

20

git clone

Perfo
to

rmance comparable
other file systems

BetrFS-0.1 BetrFS-0.2

extd xfs btrfs zfs

git diff

Recursive scan performance
pays off in real applications

BetrFS-0.1 BetrFS-0.2

extd

xfs btrfs

zfs

Macrobenchmark: dovecot imap maildir workload

1000 -

800 - Payoff of improved delete and

rename performance

= 600+
()]
@
Q
S
= 400

2001

0 I I I I I
BetrFS-0.1 BetrFS-0.2 extd xfs btrfs zfs

Conclusion

* A write-optimized file system can be general purpose
 \Write optimization is not a trade-off

* BetrFS has strong performance across many operations
 And across many applications

* Opportunity to re-examine file system trade-offs in light of
new data structures

Code available at
betrfs.org

SSD performance preview

Random writes Sequential writes
0.25+ 600 -
55 500 -
|~ _
[6Xx speedup » 400+
= =
5 5 300
o o
i o o
S 0.1 S
2 £ 200
- 3 Still work to do
0.05-
100
0 l l 0 l
BetrFS-0.2 extd BetrFS-0.2 ext4d

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	The tension between fast rename and fast scan
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Fixing sequential write
	Fixing delete
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

