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BetrFS goal:
High-performance, general-purpose file system

Need to perform well on many operations:

* Sequential reads

* Sequential writes

* Random writes

* File/directory renames
* File deletes

* Recursive scans

* Metadata updates



Some operations seem to require a trade-off
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Full-path indexing yields fast directory scans

E Example: grep -r “key” /home/rob/doc/
3
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Rename Is expensive when using full-path indexing

Example: mv /home/rob/doc/latex /home/rob
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/home/rob/doc/latex
/home/rob/doc/latex/a.tex

/home/rob/doc/latex/b.tex
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This trade-off affects real performance

* Ext4 uses inodes
* BetrFS uses full-path indexing
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BetrFS and ext4 represent different trade-offs
between directory scan and rename performance



Outline

* Zoning: a technique for fast renames + scans
* Other contributions (sketch)
* Evaluation



Zoning: balancing indirection and locality

Scan cost
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Rename cost
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Zone: a subtree of the directory hierarchy

e Partition file system into zones
e Use full-path indexing within zones
e Use inodes between zones

Implication: Recursive
directory scans only
perform seeks when

crossing zones




Moving the root of a zone Is cheap

Example:
E mv /home/rob/video/1.mp4 /home/rob/doc
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Renaming a subtree of a zone requires copying

Example:
mv /home/rob/doc/latex /home/rob/latex




Managing zone sizes

Large zones — fast directory scans
Small zones — fast renames

We can keep zone sizes in a “sweet
spot” by splitting large zones and
merging small zones




How big should zones be?

Cost of renaming
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BetrFS-0.2 uses 512KB zones to balance
rename and scan performance



Other contributions



Late-binding journal Sequential write
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Rangecast delete
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s BetrFS still fast at other
operations?



Throughput (MB/sec)
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Random writes

BetrFS still performs
random writes orders of
magnitude faster than
other file systems
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What about real application
performance?



Macrobenchmark: git
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Macrobenchmark: dovecot imap maildir workload
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Conclusion

* A write-optimized file system can be general purpose
 \Write optimization is not a trade-off

* BetrFS has strong performance across many operations
 And across many applications

* Opportunity to re-examine file system trade-offs in light of
new data structures

Code available at
betrfs.org



SSD performance preview
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