
Optimizing Every Operation in 
a Write-Optimized File System

Jun Yuan, Yang Zhan, William Jannen,  Prashant Pandey,  Amogh Akshintala, 
Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif Walsh, Michael Bender, 

Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, Donald E. Porter

Stony Brook University,   Facebook,  Two Sigma,  Rutgers University, 
Massachusetts Institute of Technology



Need to perform well on many operations:

•  Sequential reads
•  Sequential writes
•  Random writes
•  File/directory renames
•  File deletes
•  Recursive scans
•  Metadata updates

BetrFS goal: 
      High-performance, general-purpose file system



Some operations seem to require a trade-off

sequential 
reads

 random writes

 directory 
scans

 renames

update-in-place log 
structured 

inodes full-path 
indexing

No trade-off
Be t rFS



Full-path indexing yields fast directory scans

Example: grep -r “key” /home/rob/doc/

Disk (physical)Directory Tree (logical)

/home/rob/doc
/home/rob/doc/latex
/home/rob/doc/latex/a.tex
/home/rob/doc/latex/b.tex
/home/rob/doc/bar.c
/home/rob/local

….

….

….

hom
e

rob
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
bar.c

disk 
head 



hom
e

rob
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
bar.c

Rename is expensive when using full-path indexing

/home/rob/doc

/home/rob/doc/bar.c
/home/rob/local

….

….

….

Example:  mv /home/rob/doc/latex /home/rob

/home/rob/latex/a.tex
/home/rob/latex/b.tex

/home/rob/latex

/home/rob/doc/latex/b.tex
/home/rob/doc/latex/a.tex

Disk (physical)Directory Tree (logical)

/home/rob/doc/latex

la
te

x



This trade-off affects real performance

Lower is better

BetrFS and ext4 represent different trade-offs 
between directory scan and rename performance

Lower is better

15x faster
directory 

scans

● Ext4 uses inodes
● BetrFS uses full-path indexing

Orders of 
magnitude 

slower
renames



Outline

● Zoning: a technique for fast renames + scans
● Other contributions (sketch)
● Evaluation



The tension between fast rename and fast scanZoning: balancing indirection and locality

Scan cost

Rename cost

Indirection LocalityZones



Implication: Recursive 
directory scans only 
perform seeks when 

crossing zones

BetrFS v0.2 rethinking the schema

● Partition file system into zones

● Use full-path indexing within zones

● Use inodes between zones

Zone: a subtree of the directory hierarchy

hom
e

rob
local

2.jpg

videodoc

1.m
p4la

te
x

a.
te

x b.tex
bar.c

Zone 1
Zone 2Zone 0



BetrFS v0.2 rethinking the schema
Moving the root of a zone is cheap

hom
e

rob
local

2.jpg

videodoc

1.m
p4la

te
x

a.
te

x b.tex
bar.c

Zone 1
Zone 2

Example:
mv  /home/rob/video/1.mp4  /home/rob/doc

1.m
p4

Zone 0



BetrFS v0.2 rethinking the schema

hom
e

rob
local

2.jpg

videodoc

la
te

x

a.
te

x b.tex
bar.c

Zone 1
Zone 2

Example:
mv  /home/rob/doc/latex  /home/rob/latex

1.m
p4

Zone 0

Renaming a subtree of a zone requires copying

la
te

x



BetrFS v0.2 rethinking the schema

hom
e

rob
local

2.jpg

videodoc
a.

te
x b.tex

bar.c

Zone 1
Zone 2

1.m
p4

Zone 0

Managing zone sizes

la
te

x

Large zones → fast directory scans
Small zones → fast renames

We can keep zone sizes in a “sweet 
spot” by splitting large zones and 
merging small zones



How big should zones be?

BetrFS-0.2 uses 512KB zones to balance 
rename and scan performance

Cost of renaming 
root of a zone

Cost of renaming 
via copy



Other contributions



Late-binding journal

Fast sequential writes
with full data journaling

See paper for details

Sequential write



Rangecast delete

Linear in size of file

Constant latency,
about 30% faster than ext4

File delete



Is BetrFS still fast at other 
operations?



BetrFS still performs
random writes orders of
magnitude faster than 

other file systems

BetrFS still has metadata
updates almost 100x

faster than ext4

Zone splits



What about real application 
performance?



git clone git diff

Macrobenchmark: git

Performance comparable 
to other file systems Recursive scan performance

pays off in real applications



Macrobenchmark: dovecot imap maildir workload

Payoff of improved delete and
rename performance



Conclusion
● A write-optimized file system can be general purpose

● Write optimization is not a trade-off

● BetrFS has strong performance across many operations
● And across many applications

● Opportunity to re-examine file system trade-offs in light of 
new data structures

Code available at
betrfs.org



SSD performance preview

Still work to do

6x speedup


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	The tension between fast rename and fast scan
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Fixing sequential write
	Fixing delete
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

