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Storage must be robust even with system crashes
- Power loss (2016 UPS issues: Github outage, Internet outage across UK) 
- Kernel bugs

Applications need to implement crash consistency
- E.g., Database applications ensure transactions are atomic

Applications implement crash consistency wrongly
- Pillai et al., OSDI 2014 (11 applications) and Zhou et al., OSDI 2014 (8 databases)
- Conclusion: All applications had some form of incorrectness

Application-Level Crash Consistency

[source:www.datacenterknowledge.com]

[Lu et al., OSDI 2014, Palix et al., ASPLOS 2011, Chou et al., SOSP 2001]
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App crash consistency depends on FS behavior
- E.g., Bad FS behavior: 60 vulnerabilities in 11 applications
- Good FS behavior: 10 vulnerabilities in 11 applications

FS-level ordering is important for applications
- All writes should (logically) be persisted in their issued order
- Major factor affecting application crash consistency

Few FS configurations provide FS-level ordering
- Ordering is considered bad for performance

Ordering and Application Consistency

[Pillai et al., OSDI 2014]
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Stream abstraction
- Allows FS-level ordering with little performance overhead
- Needs a single, backward-compatible change to user code
- Flexible: More code changes improve performance

Crash-Consistent File System (CCFS)
- Efficient implementation of stream abstraction on ext4
- High performance similar to ext4
- Noticeably higher crash consistency for applications

In this paper ...
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Each file system behaves differently across a crash
- Little standardization of behavior across crashes

File-System Behavior

FS Crash Behavior

Atomicity

Effects of a  write() 
system call atomic on a 

system crash?

Ordering
creat(A);

creat(B);

Possible after crash that B 
exists, but A does not?



Each file system behaves differently across a crash
- Little standardization of behavior across crashes

File-System Behavior

FS Crash Behavior

Atomicity Ordering

Directory operations
E.g., rename() atomic?

File writes
Entire system call?

Sector-level?

......



Previous work: App crash consistency vs FS behavior

Vulnerabilities Study

[Pillai et al., OSDI 2014]



Previous work: App crash consistency vs FS behavior

“Vulnerability”: Place in application source code that can lead to 
inconsistency, depending on FS behavior

Vulnerabilities Study

[Pillai et al., OSDI 2014]



Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-DJ
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total
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60
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of atomicity and ordering, 60 
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- Serious consequences: 
unavailability, data loss



Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-DJ
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total
_______________

60
_______________

31
_______________

10

        Ordering ✗ ✗ ✔

        Atomicity ✗ ✔ ✔ Under btrfs, with atomicity 
but lots of re-ordering, 31 
vulnerabilities

- Serious consequences

Repository corruption

Unavailability



Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-DJ
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total
_______________

60
_______________

31
_______________

10

        Ordering ✗ ✗ ✔

        Atomicity ✗ ✔ ✔ Under data-journaled ext3, 
with both atomicity and 
ordering, 10 vulnerabilities

- Minor consequences

Dirstate corruption

Documentation error
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Ideal behavior: Ordering, “weak atomicity”
- All file system updates should be persisted in-order
- Writes can split at sector boundary; everything else atomic

Modern file systems already provide weak atomicity
- E.g.: Default modes of ext4, btrfs, xfs

Only rarely used FS configurations provide ordering
- E.g.: Data-journaling mode of ext4, ext3

Real-world vs Ideal FS behavior



File-system behavior affects application consistency
- Behavior is not standardized
- 60 vulnerabilities with ext2-like FS; 10 with well-behaved FS

Desired behavior: Ordering and weak atomicity
- Weak atomicity already provided by modern file systems
- Ordering provided only by rarely-used FS configurations

Background: Summary
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Some existing file systems preserve order
- Example: ext3 and ext4 under data-journaling mode
- Performance overhead?

New techniques are efficient in maintaining order
- CoW, optimized forms of journaling
- Ordering doesn’t require disk-level seeks

Reason: False ordering dependencies
- Inherent overhead of ordering, irrespective of technique used

Why not use an order-preserving FS?



Application A Application B
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False Ordering Dependencies



Application A

pwrite(f1, 0, 150 MB);

Application B
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Application A

pwrite(f1, 0, 150 MB);

Application B

 
write(f2, “hello”);
write(f3, “world”);
fsync(f3);
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write(f1) has to be sent 
to disk before write(f2)

False Ordering Dependencies

In a globally ordered file system ...



Application A

pwrite(f1, 0, 150 MB);

Application B

 
write(f2, “hello”);
write(f3, “world”);
fsync(f3);
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Problem: Ordering between independent applications

Application A

pwrite(f1, 0, 150 MB);

Application B

 
write(f2, “hello”);
write(f3, “world”);
fsync(f3);
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False Ordering Dependencies

In a globally ordered file system ...



Problem: Ordering between independent applications

Solution: Order only within each application
- Avoids performance overhead, provides app consistency

Application A

pwrite(f1, 0, 150 MB);

Application B

 
write(f2, “hello”);
write(f3, “world”);
fsync(f3);
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New abstraction: Order only within a “stream”
- Each application is usually put into a separate stream

Application A

pwrite(f1, 0, 150 MB);

Application B

 
write(f2, “hello”);
write(f3, “world”);
fsync(f3);
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stream-B

stream-A

       0.06 seconds



New set_stream() call
- All updates after set_stream(X) associated with stream X
- When process forks, previous stream is adopted

Application A
set_stream(A)
pwrite(f1, 0, 150 MB);

Application B
set_stream(B)

 
write(f2, “hello”);
write(f3, “world”);
fsync(f3);

40

Time

1

2
3
4

Stream API: Normal Usage



New set_stream() call
- All updates after set_stream(X) associated with stream X
- When process forks, previous stream is adopted

Using streams is easy
- Add a single set_stream() call in beginning of application
- Backward-compatible: set_stream() is no-op in older FSes

41

Stream API: Normal Usage



set_stream()  is versatile
- Many applications can be assigned the same stream
- Threads within an application can use different streams
- Single thread can keep switching between streams

42

Stream API: Extended Usage



set_stream()  is versatile
- Many applications can be assigned the same stream
- Threads within an application can use different streams
- Single thread can keep switching between streams

Ordering vs durability: stream_sync(), IGNORE_FSYNC flag
- Applications use fsync() for both ordering and durability
- IGNORE_FSYNC ignores fsync(), respects stream_sync()

43

Stream API: Extended Usage

[Chidambaram et al., SOSP2013]



In an ordered FS, false dependencies cause overhead
- Inherent overhead, independent of technique used

Streams provide order only within application
- Writes across applications can be re-ordered for performance
- For consistency, ordering required only within application

Easy to use!

44

Streams: Summary
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“Crash consistent file system”
- Efficient implementation of stream abstraction

CCFS: Design
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“Crash consistent file system”
- Efficient implementation of stream abstraction

Basic design: Based on ext4 with data-journaling
- Ext4 data-journaling guarantees global ordering
- Ordering across all applications: false dependencies
- CCFS uses separate transactions for each stream

CCFS: Design
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“Crash consistent file system”
- Efficient implementation of stream abstraction

Basic design: Based on ext4 with data-journaling
- Ext4 data-journaling guarantees global ordering
- Ordering across all applications: false dependencies
- CCFS uses separate transactions for each stream

Multiple challenges

CCFS: Design

48



Ext4 has 1) main-memory structure, “running transaction”,
                 2) on-disk journal structure

Ext4 Journaling: Global Order

49

Main memory

On-disk journal

Running transaction



Ext4 Journaling: Global Order
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1 3Main memory

On-disk journal

Application modifications
recorded in main-memory
running transaction

2 4

Application A
  Modify blocks #1,#3

Running transaction

    Application B

Modify blocks #2,#4
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Application A
  Modify blocks #1,#3

1 3

Running transaction

Main memory

On-disk journal

On fsync() call, running 
transaction “committed” to 
on-disk journal

    Application B

Modify blocks #2,#4
fsync()

2 4

Ext4 Journaling: Global Order
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Application A
  Modify blocks #1,#3

Running transaction

Main memory

On-disk journal

On fsync() call, running 
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on-disk journal
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Ext4 Journaling: Global Order
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Application A
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  Modify blocks #5,#6

Running transaction

Main memory

On-disk journal

Further application writes 
recorded in new running 
transaction and committed
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Running transaction

Main memory

On-disk journal

On system crash, on-disk 
journal transactions recovered 
atomically, in sequential order
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Running transaction

Main memory

On-disk journal

On system crash, on-disk 
journal transactions recovered 
atomically, in sequential order
Global ordering is maintained!

Ext4 Journaling: Global Order

1 3 2 4

be
gi

n

en
d 5 6

be
gi

n

en
d



58

Application A
  set_stream(A)
  Modify blocks #1,#3

stream-B transaction

Main memory

On-disk journal

CCFS maintains separate running 
transaction per stream

    Application B
set_stream(B)

Modify blocks #2,#4

CCFS: Stream Order

stream-A transaction

1 3 2 4
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Application A
  set_stream(A)
  Modify blocks #1,#3

stream-B transaction

Main memory

On-disk journal

On fsync(), only that stream is 
committed
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Application A
  set_stream(A)
  Modify blocks #1,#3

stream-B transaction

Main memory

On-disk journal

On fsync(), only that stream is 
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    Application B
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Modify blocks #2,#4
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Application A
  set_stream(A)
  Modify blocks #1,#3

stream-B transaction

Main memory

On-disk journal

Ordering maintained within 
stream, re-order across streams!

    Application B
set_stream(B)

Modify blocks #2,#4
fsync()

CCFS: Stream Order

stream-A transaction

1 3

2 4
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Example: Two streams updating adjoining dir-entries

CCFS: Multiple Challenges
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Application A
  set_stream(A)
  create(/X/A)

    Application B
set_stream(B)

create(/X/B)



Example: Two streams updating adjoining dir-entries

CCFS: Multiple Challenges
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Application A
  set_stream(A)
  create(/X/A)

    Application B
set_stream(B)

create(/X/B)Entry-A
Entry-B

Block-1 (belonging to directory X)



Challenge #1: Block-Level Journaling
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Entry-A
Entry-B

Block-1

stream-B transaction

Main memory

stream-A transaction

? ?

Two independent streams can 
update same block!

Application A
  set_stream(A)
  create(/X/A)

    Application B
set_stream(B)

create(/X/B)



Challenge #1: Block-Level Journaling
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Entry-A
Entry-B

Block-1

stream-B transaction

Main memory

stream-A transaction

? ?

Two independent streams can 
update same block!

Application A
  set_stream(A)
  create(/X/A)

    Application B
set_stream(B)

create(/X/B)

Faulty solution: Perform journaling at byte-granularity
- Disables optimizations, complicates disk updates



Challenge #1: Block-Level Journaling
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stream-B transaction

Main memory

stream-A transaction

CCFS solution:
Record running transactions at 
byte granularity

Application A
  set_stream(A)
  create(/X/A)

    Application B
set_stream(B)

create(/X/B)

Entry-A Entry-B



Challenge #1: Block-Level Journaling
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stream-B transaction

Main memory

stream-A transaction

Application A
  set_stream(A)
  create(/X/A)

    Application B
set_stream(B)

create(/X/B)

Entry-A Entry-B

CCFS solution:
Record running transactions at 
byte granularity
Commit at block granularity

On-disk journal



Challenge #1: Block-Level Journaling
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stream-B transaction

Main memory

stream-A transaction

Application A
  set_stream(A)
  create(/X/A)

    Application B
set_stream(B)

create(/X/B)

Entry-A Entry-B

CCFS solution:
Record running transactions at 
byte granularity
Commit at block granularity

On-disk journal be
gi

n

en
d

Entry-B
Entry-A

Entire block-1 committed

Old version 
of entry-A
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1. Both streams update directory’s modification date
- Solution: Delta journaling

2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures

3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse

4. Ordering technique: Data journaling cost
- Solution: Selective data journaling [Chidambaram et al., SOSP 2013]

5. Ordering technique: Delayed allocation requires re-ordering
- Solution: Order-preserving delayed allocation

More Challenges ...
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Details in the paper!
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1. Does CCFS solve application vulnerabilities?
- Tested five applications: LevelDB, SQLite, Git, Mercurial, ZooKeeper
- Method similar to previous study (ALICE tool) [Pillai et al., OSDI 2014]

- New versions of applications
- Default configuration, instead of safe configuration

Evaluation

77



1. Does CCFS solve application vulnerabilities?
Evaluation

78

Vulnerabilities

Application ext4 ccfs

LevelDB 1 0

SQLite-Roll 0 0

Git 2 0

Mercurial 5 2

ZooKeeper 1 0
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Ext4: 9 Vulnerabilities
- Consistency lost in LevelDB
- Repository corrupted in Git, Mercurial
- ZooKeeper becomes unavailable
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1. Does CCFS solve application vulnerabilities?
Evaluation
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Ext4: 9 Vulnerabilities
- Consistency lost in LevelDB
- Repository corrupted in Git, Mercurial
- ZooKeeper becomes unavailable

CCFS: 2 vulnerabilities in Mercurial
- Dirstate corruption

Vulnerabilities

Application ext4 ccfs

LevelDB 1 0

SQLite-Roll 0 0

Git 2 0

Mercurial 5 2

ZooKeeper 1 0



Evaluation
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2.   Performance within an application
- Do false dependencies reduce performance inside application?
- Or, do we need more than one stream per application?
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for ext4, ccfs

But ext4 re-orders!
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because of safer 
configuration needed 
for correctness
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2.   Performance within an application
Evaluation
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But, performance can 
be improved with 
IGNORE_FSYNC and 
stream_sync()!
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Crash consistency: Better than ext4
- 9 vulnerabilities in ext4, 2 minor in CCFS

Performance: Like ext4 with little programmer overhead
- Much better with additional programmer effort

More results in paper!

Evaluation: Summary
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FS crash behavior is currently not standardized

Ideal FS behavior can improve application consistency
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FS crash behavior is currently not standardized

Ideal FS behavior can improve application consistency

Ideal FS behavior is considered bad for performance

Stream abstraction and CCFS solve this dilemma

Thank you! Questions?

Conclusion
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Examples

1. LevelDB:
a. creat(tmp); write(tmp); fsync(tmp); rename(tmp, CURRENT); --> unlink(MANIFEST-old);

i. Unable to open the database
b. write(file1, kv1); write(file1, kv2); --> creat(file2, kv3);

i. kv1 and kv2 might disappear, while kv3 still exists
2. Git:

a. append(index.lock) --> rename(index.lock, index)
i. “Corruption “ returned by various Git commands

b. write(tmp); link(tmp, object) --> rename(master.lock, master)
i. “Corruption “ returned by various Git commands

3. HDFS:
a. creat(ckpt); append(ckpt); fsync(ckpt); creat(md5.tmp); append(md5.tmp); fsync(md5.tmp);  

rename(md5.tmp, md5); --> rename(ckpt, fsimage);
i. Unable to boot the server and use the data



One sector overwrite: Atomic because 
of device characteristics

Appends: Garbage in some file systems

File systems do not usually provide 
atomicity for big writes

File System Study: Results

File system 
configuration

Atomicity
One sector 
overwrite

One sector 
append

Many sector 
write

Directory 
operation

ext2
async ✘ ✘ ✘

sync ✘ ✘ ✘

ext3
writeback ✘ ✘

ordered ✘

data-journal ✘

ext4

writeback ✘ ✘

ordered ✘

no-delalloc ✘

data-journal ✘

btrfs ✘

xfs
default ✘

wsync ✘



One sector overwrite: Atomic because 
of device characteristics

Appends: Garbage in some file systems

File systems do not usually provide 
atomicity for big writes

Directory operations are usually atomic

File System Study: Results

File system 
configuration

Atomicity
One sector 
overwrite

One sector 
append

Many sector 
write

Directory 
operation

ext2
async ✘ ✘ ✘

sync ✘ ✘ ✘

ext3
writeback ✘ ✘

ordered ✘

data-journal ✘

ext4

writeback ✘ ✘

ordered ✘

no-delalloc ✘

data-journal ✘

btrfs ✘

xfs
default ✘

wsync ✘



Collecting System Call Trace

git add file1 Application Workload

Record strace, memory accesses (for mmap 
writes), initial state of datastore

creat(index.lock)
creat(tmp)
append(tmp, data, 4K)
fsync(tmp)
link(tmp, permanent)
append(index.lock)
rename(index.lock, index)

TraceInitial state
.git/...



Calculating Intermediate States

a. Convert system calls into atomic modifications

creat(index.lock)
creat(tmp)
append(tmp, 4K)

fsync(tmp)
link(tmp, permanent)
...

creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)
truncate(inode=2, 2)
...
truncate(inode=2, 4K)
write(inode=2, garbage)
write(inode=2, actual data)
...

link(inode=2, dentry=permanent)
...



Calculating Intermediate States

b. Find ordering dependencies 

creat(index.lock)
creat(tmp)
append(tmp, 4K)

fsync(tmp)
link(tmp, permanent)
...

creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)
truncate(inode=2, 2)
...
truncate(inode=2, 4K)
write(inode=2, garbage)
write(inode=2, actual data)
...

link(inode=2, dentry=permanent)
...



Calculating Intermediate States

c. Choose a few sets of modifications obeying dependencies

creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)
truncate(inode=2, 2)
...
truncate(inode=2, 4K)
write(inode=2, garbage)
write(inode=2, actual data)
...

link(inode=2, dentry=permanent)
...

Set 1:
creat(inode=1, dentry=index.lock)
<all truncates and writes to inode 2>

Set 2:
creat(inode=1, dentry=index.lock)
<all truncates and writes to inode 2>
link(inode=2, dentry=permanent)

Set 3:
creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)

... more sets



Calculating Crash States from a Trace

d. Reconstruct states from sets of modifications

Set 1:
creat(inode=1, dentry=index.lock)
<all truncates and writes to inode 2>

Set 2:
creat(inode=1, dentry=index.lock)
<all truncates and writes to inode 2>
link(inode=2, dentry=permanent)

Set 3:
creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)

... more sets

.git/index.lock (0)

.git/index.lock (0)

.git/permanent (4K)

.git/index.lock (0)

.git/tmp (1)



Checking ALC on Intermediate States

.git/tmp (4K)

.git/index (1K)
.git/tmp (4K:garbage)
.git/index.lock (1K)

.git/permanent (4K)

.git/tmp (4K)

.git/index (0K)

Multiple Possible Intermediate States

git status; git fsck;

ERROR CORRECT OUTPUT CORRECT OUTPUT



Applications implement complex update protocols
‐ Aiming for both correctness and performance
‐ Each protocol is different

Update protocols hard to implement and test
Applications many and varied

‐ Little effort to test each

Unfortunately, file systems make ALC more difficult

 

Why is ALC problematic?



Persistence models used by us to find vulnerabilites
But, persistence models can be complex

‐ Example: write() ordered before unlink() iff they act on the 
same directory and write() is more than 4KB

‐ Useful for verifying ALC atop a file system

Persistence models not suitable to discuss ALC
‐ Is fsync() required after writes to log file in ext3?
‐ Or, do write() calls persist in-order?

Persistence Models: Too Complex



Does FS obey a particular interesting behavior?
‐ Example: Do write() calls persist in-order?
‐ Are write() calls atomic?

Applications typically depend on some properties
‐ Forgot an fsync(): depends on ordering properties
‐ Forgot checksum verification: depends on atomic write()

Persistence Properties



Content-Atomicity of Appends
Does an append result in garbage?

Persistence Properties: Example #1

Impossible 
Intermediate StateSystem call sequence

lseek(file1, End of file)

write(file1, “hello”)

/file1 “he#@!”

/file1 “he”

Allowed 
Intermediate State



Ordered Writes
Are the effects of write() sent to disk in-order?

Persistence Properties: Example #2

Impossible 
Intermediate State
/file1 “”
/file2 “world”

/file1 “hello”
/file2 “”

Allowed 
Intermediate State

System call sequence
write(file1, “hello”)

write(file2, “world”)



     creat(index.lock)
(i) store object 

append(index.lock)
    rename(index.lock,index)

          stdout(finished add)

Example: Git

(i) store object

(ii) git add

(iii) git commit

(i) store object
creat(branch.lock)

append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)

rename(branch.lock,x/branch)
stdout(finished commit)

mkdir(o/x)
creat(o/x/tmp_y)

append(o/x/tmp_y)
 fsync(o/x/tmp_y)  

link(o/x/tmp_y, o/x/y)
unlink(o/x/tmp_y)

0

2
3
4
5

1



Atomicity

Example: Git

     creat(index.lock)
(i) store object 

append(index.lock)
    rename(index.lock,index)

          stdout(finished add)

(i) store object

(ii) git add

(iii) git commit

(i) store object
creat(branch.lock)

append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)

rename(branch.lock,x/branch)
stdout(finished commit)

mkdir(o/x)
creat(o/x/tmp_y)

append(o/x/tmp_y)
 fsync(o/x/tmp_y)  

link(o/x/tmp_y, o/x/y)
unlink(o/x/tmp_y)

0

2
3
4
5

1



Ordering

Example: Git

(i)
0,
(i)

4(i)
0,
(i)

4

     creat(index.lock)
(i) store object 

append(index.lock)
    rename(index.lock,index)

          stdout(finished add)

(i) store object

(ii) git add

(iii) git commit

(i) store object
creat(branch.lock)

append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)

rename(branch.lock,x/branch)
stdout(finished commit)

mkdir(o/x)
creat(o/x/tmp_y)

append(o/x/tmp_y)
 fsync(o/x/tmp_y)  

link(o/x/tmp_y, o/x/y)
unlink(o/x/tmp_y)

0

2
3
4
5

1



Durability

Example: Git

d

d

     creat(index.lock)
(i) store object 

append(index.lock)
    rename(index.lock,index)

          stdout(finished add)

(i) store object

(ii) git add

(iii) git commit

(i) store object
creat(branch.lock)

append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)

rename(branch.lock,x/branch)
stdout(finished commit)

mkdir(o/x)
creat(o/x/tmp_y)

append(o/x/tmp_y)
 fsync(o/x/tmp_y)  

link(o/x/tmp_y, o/x/y)
unlink(o/x/tmp_y)

0

2
3
4
5

1



Vulnerability Study: Patterns



Across syscall atomicity: Few, minor consequences

Vulnerability Study: Patterns



Garbage during appends cause 4 vulnerabilities
File writes seemingly need only sector-level atomicity

Vulnerability Study: Patterns



A separate fsync() on parent directory: 6 vulnerabilities

Vulnerability Study: Patterns



Six applications do not fsync() directory operations

Vulnerability Study: Patterns



Solution:
1. User supplies application workload
2. Record a system-call trace from workload
3. Use “Abstract Persistence Model” and reconstruct 

targeted  intermediate states
4. Run user-given checker on  reconstructed states

ALICE: Solution

git add file1

creat(index.lock)
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

.git/index.lock (0)

.git/index.lock (0)

.git/permanent (4K)

.git/index.lock (0)

.git/tmp (1)

CORRECT

ERROR

ERROR

git status
git fsck



ALICE: Intermediate States #1

Does application need atomicity across system calls?
Method: Crash after each system call

creat(index.lock).
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...



ALICE: Intermediate States #1

Does application need atomicity across system calls?
Method: Crash after each system call

creat(index.lock).
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

Crash here



ALICE: Intermediate States #1

Does application need atomicity across system calls?
Method: Crash after each system call

creat(index.lock).
creat(tmp)       .
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

Crash here
 ...



Does application need atomicity of an individual 
system call?
Method:

1. Apply all system calls until examined call
2. Apply various partial effects of examined callcreat(index.lock)

creat(tmp)       
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

ALICE: Intermediate States #2

System call
examined



Does application need atomicity of an individual 
system call?
Method:

1. Apply all system calls until examined call
2. Apply various partial effects of examined callcreat(index.lock).

creat(tmp)       .
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

ALICE: Intermediate States #2

System call
examined

Apply these calls



Does application need atomicity of an individual 
system call?
Method:

1. Apply all system calls until examined call
2. Apply various partial effects of examined callcreat(index.lock).

creat(tmp)       .
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

ALICE: Intermediate States #2

System call
examined

Apply these calls append(tmp, 2K)

(or)
append(tmp, “#@!%^”)

(or)
append(tmp, 1K)

Apply one of these



Does application need ordering of a system call?
Method:

1. Apply all system calls  except  examined call ...
2. Crash at different points in trace

creat(index.lock)
creat(tmp)      
append(tmp, 4K)  
fsync(tmp)      
link(tmp, perm) 
...

ALICE: Intermediate States #3

System call
examined



Does application need ordering of a system call?
Method:

1. Apply all system calls  except  examined call ...
2. Crash at different points in trace

creat(index.lock).
creat(tmp)      
append(tmp, 4K)  .
fsync(tmp)      
link(tmp, perm) 
...

ALICE: Intermediate States #3

System call
examined

Ordering
examined



Does application need ordering of a system call?
Method:

1. Apply all system calls  except  examined call ...
2. Crash at different points in trace

creat(index.lock).
creat(tmp)      
append(tmp, 4K)  .
fsync(tmp)       .
link(tmp, perm)  .
...

ALICE: Intermediate States #3

System call
examined Ordering

examined



File System Study: Results
File system 

configuration

Atomicity Ordering
One sector 
overwrite

Append 
content

Many sector 
overwrite

Directory 
operation

Overwrite → 
Any op

Append → 
Any op

Dir-op 
→ Any op

Append → 
Rename

ext2
async ✓

sync ✓ ✓ ✓ ✓ ✓

ext3
writeback ✓ ✓ ✓

ordered ✓ ✓ ✓ ✓ ✓ ✓

data-journal ✓ ✓ ✓ ✓ ✓ ✓ ✓

ext4

writeback ✓ ✓ ✓

ordered ✓ ✓ ✓ ✓ ✓

no-delalloc ✓ ✓ ✓ ✓ ✓ ✓

data-journal ✓ ✓ ✓ ✓ ✓ ✓ ✓

btrfs ✓ ✓ ✓ ✓ ✓

xfs
default ✓ ✓ ✓ ✓ ✓

wsync ✓ ✓ ✓ ✓ ✓ ✓

One-sector-overwrite atomicity is due to current hardware,
might change with NVMs



File System Study: Results
File system 

configuration

Atomicity Ordering
One sector 
overwrite

Append 
content

Many sector 
overwrite

Directory 
operation

Overwrite → 
Any op

Append → 
Any op

Dir-op 
→ Any op

Append → 
Rename

ext2
async ✓

sync ✓ ✓ ✓ ✓ ✓

ext3
writeback ✓ ✓ ✓

ordered ✓ ✓ ✓ ✓ ✓ ✓

data-journal ✓ ✓ ✓ ✓ ✓ ✓ ✓

ext4

writeback ✓ ✓ ✓

ordered ✓ ✓ ✓ ✓ ✓

no-delalloc ✓ ✓ ✓ ✓ ✓ ✓

data-journal ✓ ✓ ✓ ✓ ✓ ✓ ✓

btrfs ✓ ✓ ✓ ✓ ✓

xfs
default ✓ ✓ ✓ ✓ ✓

wsync ✓ ✓ ✓ ✓ ✓ ✓

File systems patched to obey 
a particular property



Does FS behavior affect applications?

What FS behaviors are important?

Is testing for crash vulnerabilities generally helpful?

Not a goal: Comparing correctness among applications

Vulnerability Study: Goals



ALICE: Technique
Application Workload

System-call
Trace

Explorer

Crash state #1 
(Violates atomicity 

of syscall-1)

Crash state #2 
(Violates ordering 
of syscall-1 and 2) ...Application 

Checker

Correct Incorrect

Crash vulnerability: 
Re-ordering syscall-1 and 2

ALICE APM: Abstract 
Persistence 

Model



File systems vary in persistence properties

Application correctness can vary among file systems!

Challenge: Validating application correctness without 
assuming a particular underlying file system

File System Study: Conclusion



Challenge #2: Space Reuse

File1
Inode

Data

Data

Data    Stream 2
  (Application 2)

creat(file2);
write(file2, “hello”);
fsync(file2)

132



Challenge #2: Space Reuse

File1
Inode

Data

Data

Data    Stream 1 
  (Application 1)
write(file3,150MB);
truncate(file1);

   Stream 2
  (Application 2)

133



Challenge #2: Space Reuse

File1
Inode

Data

Data

Data
Inode

File2    Stream 1 
  (Application 1)
write(file3,150MB);
truncate(file1);

   Stream 2
  (Application 2)

creat(file2);
134



Challenge #2: Space Reuse

File1
Inode

Data

Data

Data
Inode

File2    Stream 1 
  (Application 1)
write(file3,150MB);
truncate(file1);

   Stream 2
  (Application 2)

creat(file2);
write(file2, “hello”);135



Challenge #2: Space Reuse

File1
Inode

Data

Data

Data
Inode

File2

Block pointer manipulation shown 
so far occurs in memory

   Stream 1 
  (Application 1)
write(file3,150MB);
truncate(file1);

   Stream 2
  (Application 2)

creat(file2);
write(file2, “hello”);136



Challenge #2: Space Reuse

File1
Inode

Data

Data

Data
Inode

File2

What if pointer manipulation 
occurs in different streams?

   Stream 1 
  (Application 1)
write(file3,150MB);
truncate(file1);

   Stream 2
  (Application 2)

creat(file2);
write(file2, “hello”);137



Challenge #2: Space Reuse

If only one stream commits,
FS consistency will be affectedFile1

Inode

Data

Data

DataFile2
Inode

Possible crash state

   Stream 1 
  (Application 1)
write(file3,150MB);
truncate(file1);

   Stream 2
  (Application 2)

creat(file2);
write(file2, “hello”);
fsync(file2)

138



Each file system behaves differently across a crash
- Behavior across crashes are not standardized
- Behavior can be divided into atomicity and ordering

Atomicity of updates might not be maintained
- Atomicity of file writes
- Other operations: Renaming a file, deleting a file etc.

Ordering of updates might not be maintained
- Writes may reach disk out-of-order

File-System Behavior


