Application Crash Consistency
and Performance with CCFS

Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan, Lanyue Lu,
Vijay Chidambaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Storage must be robust even with system crashes

- Power loss (2016 UPS issues: Github outage, Internet outage across UK)

[source:www.datacenterknowledge.com]
- Kernel bugs [Lu et al., OSDI 2014, Palix et al., ASPLOS 2011, Chou et al., SOSP 2001]

Storage must be robust even with system crashes

- Power loss (2016 UPS issues: Github outage, Internet outage across UK)

[source:www.datacenterknowledge.com]
- Kernel bugs [Lu et al., OSDI 2014, Palix et al., ASPLOS 2011, Chou et al., SOSP 2001]

Applications need to implement crash consistency

- E.g., Database applications ensure transactions are atomic

Storage must be robust even with system crashes

- Power loss (2016 UPS issues: Github outage, Internet outage across UK)

[source:www.datacenterknowledge.com]
- Kernel bugs [Lu et al., OSDI 2014, Palix et al., ASPLOS 2011, Chou et al., SOSP 2001]

Applications need to implement crash consistency

- E.g., Database applications ensure transactions are atomic

Applications implement crash consistency wrongly

- Pillai et al., OSDI 2014 (11 applications) and zZhou et al, OSDI 2014 (8 databases)
- Conclusion: All applications had some form of incorrectness

App crash consistency depends on FS behavior

[Pillai et al., OSDI 2014]

- E.g., Bad FS behavior: 60 vulnerabilities in 11 applications
- Good FS behavior: 10 vulnerabilities in 11 applications

App crash consistency depends on FS behavior

[Pillai et al., OSDI 2014]

- E.g., Bad FS behavior: 60 vulnerabilities in 11 applications
- Good FS behavior: 10 vulnerabilities in 11 applications

- All writes should (logically) be persisted in their issued order
- Major factor affecting application crash consistency

App crash consistency depends on FS behavior

[Pillai et al., OSDI 2014]

- E.g., Bad FS behavior: 60 vulnerabilities in 11 applications
- Good FS behavior: 10 vulnerabilities in 11 applications

FS-level ordering is important for applications

- All writes should (logically) be persisted in their issued order
- Major factor affecting application crash consistency

- Ordering is considered bad for performance

Stream abstraction

- Allows FS-level ordering with little performance overhead
- Needs a single, backward-compatible change to user code
- Flexible: More code changes improve performance

Stream abstraction

- Allows FS-level ordering with little performance overhead
- Needs a single, backward-compatible change to user code
- Flexible: More code changes improve performance

Crash-Consistent File System (CCFS)

- Efficient implementation of stream abstraction on ext4
- High performance similar to ext4
- Noticeably higher crash consistency for applications

Introduction

Stream API
Crash-Consistent File System
Evaluation

Conclusion

Each file system behaves differently across a crash

- Little standardization of behavior across crashes

Each file system behaves differently across a crash

- Little standardization of behavior across crashes

FS Crash Behavior

— ~

Atomicity Ordering

Each file system behaves differently across a crash

- Little standardization of behavior across crashes

FS Crash Behavior

— ~

Atomicity Ordering
creat(A);
creat(B);

Effects ofa write()
system call atomic on a
system crash? Possible after crash that B
exists, but A does not?

Each file system behaves differently across a crash

- Little standardization of behavior across crashes

FS Crash Behavior

— ~

/ Atomicity\ Ordering
Directory operations File writes
E.g.. rename() atomic? Entire system call?

Sector-level?

Previous work: App crash consistency vs FS behavior

[Pillai et al., OSDI 2014]

Previous work: App crash consistency vs FS behavior

[Pillai et al., OSDI 2014]

“Vulnerability”: Place in application source code that can lead to
inconsistency,

Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-D)

LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1

GDBM 5 4 2
HSQLDB 10 4

SQLite-Roll 1 1 1
SQLite-WAL 0]

PostgreSQL 1

Git 9 5 2
Mercurial 10 8 3
VMWare 1

HDFS 2 1

ZooKeeper 4 1

Total 60 31 10

Applications

Vulnerabilities Study: Results

File sykstems

—

Ext2-like FS Btrfs Ext3-D)
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0]
PostgreSQL -
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1
Total 60 31 10

Vulnerabilities under safest
application configuration

Vulnerabilities Study: Results

Ordering X X P File-system behavior
Atomicity X v v
Ext2-like FS Btrfs Ext3-D)
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQlLite-Roll 1 1 1
SQLite-WAL o
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total 60 31 10

Vulnerabilities Study: Results

Ordering X X v
ici v v :
Atomicity X Under FS with few guarantees
Ext2-like FS Btrfs Ext3-D) of atomicity and ordering, 60

LevelDB-1.10 10 4 1 vulnerabilities are exposed
LevelDB-1.15 6 3 1
LMDB 1 - Serious consequences:
GDBM 5 4 2 unavailability, data loss
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

o
@
W
o

Total

Vulnerabilities Study: Results

Ordering X X 4
Atomicity X v v Under btrfs, with atomicity
Ext2-like FS Btrfs Ext3-D) but lots of re-ordering, 31
LevelDB-1.10 10 4 1 vulnerabilities
LevelDB-1.15 6 3 1 .
I MDB 1 - Serious consequences
GDBM 5 4 2
HSQLDB 10 4
SQlLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git ° d>. 2
Mercurial 10 . 8 3 > Repository corruption
VMWare 1
HDFS 2 r
ZooKeeper 4 -1 > Unavailability

Total 60 31 10

Vulnerabilities Study: Results

Ordering X X 4
Atomicity X v v Under data-journaled ext3,
Ext2-like FS Btrfs Ext3-D) with both atomicity and

LevelDB-1.10 10 4 1 ordering, 10 vulnerabilities
LevelDB-1.15 6 3 1)
IMDB 1 - Minor consequences
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 - 1 —> Documentation error
SQLite-WAL o
PostgreSQL 1
Git 9 5 L2
Mercurial 10 8 . 3 —> Dirstate corruption
VMWare
HDFS 2 1
ZooKeeper 4 1

Total 60 31 10

Ideal behavior: Ordering, “weak atomicity”

- All file system updates should be persisted in-order
- Wirites can split at sector boundary; everything else atomic

Ideal behavior: Ordering, “weak atomicity”

- All file system updates should be persisted in-order
- Wirites can split at sector boundary; everything else atomic

Modern file systems already provide weak atomicity
- E.g.: Default modes of ext4, btrfs, xfs

Ideal behavior: Ordering, “weak atomicity”

- All file system updates should be persisted in-order
- Wirites can split at sector boundary; everything else atomic

Modern file systems already provide weak atomicity
- E.g.: Default modes of ext4, btrfs, xfs

Only rarely used FS configurations provide ordering

- E.g.: Data-journaling mode of ext4, ext3

File-system behavior affects application consistency

- Behavior is not standardized
- 60 vulnerabilities with ext2-like FS; 10 with well-behaved FS

Desired behavior: Ordering and weak atomicity

- Weak atomicity already provided by modern file systems
- Ordering provided only by rarely-used FS configurations

Introduction

Background

Crash-Consistent File System
Evaluation

Conclusion

Some existing file systems preserve order

- Example: ext3 and ext4 under data-journaling mode
- Performance overhead?

Some existing file systems preserve order

- Example: ext3 and ext4 under data-journaling mode
- Performance overhead?

New techniques are efficient in maintaining order

- CoW, optimized forms of journaling
- Ordering doesn't require disk-level seeks

Some existing file systems preserve order

- Example: ext3 and ext4 under data-journaling mode
- Performance overhead?

New techniques are efficient in maintaining order

- CoW, optimized forms of journaling
- Ordering doesn't require disk-level seeks

Reason:

- Inherent overhead of ordering, irrespective of technique used

False Ordering Dependencies

Application A Application B

31

False Ordering Dependencies

Time Application A Application B

1 pwrite(f1, 0,150 MB);

32

False Ordering Dependencies

Application A Application B
pwrite(f1, 0,150 MB);

write(f2, "hello”);
write(f3, “world”);

33

False Ordering Dependencies

Application A

pwrite(f1, 0, 150 MB);

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

34

False Ordering Dependencies

In a globally ordered file system ...

Time Application A Application B
1 pwrite(f1, 0,150 MB);
\ _____ f—
L J— ~
2 write , “hello”);
3 writexg, “world"”);
4 fsync(f3);

write(f1) has to be sent
to disk before write(f2)

35

False Ordering Dependencies

In a globally ordered file system ...

Time Application A Application B
2 seconds, irrespective
1 pwrite(f1, 0, 150 NB); of implementation used
to get ordering!
2 write(f2, "hello”);
3 write(f3, "world”);
4 fsync(f3),; <«

36

False Ordering Dependencies

Problem: Ordering between independent applications

In a globally ordered file system ...

Application A

pwrite(f1, 0, 150 MB);

Application B

2 seconds, irrespective
of implementation used
to get ordering!

write(f2, “hello”);
write(f3, “world”);
fsync(f3); <«

37

Problem: Ordering between independent applications

Solution: Order only within each application

- Avoids performance overhead, provides app consistency

Application A

pwrite(f1, 0,),

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

38

New abstraction: Order only within a “stream”

- Each application is usually put into a separate stream

Application A Application B
pwrite(f1, 0,),

write(f2,; “hello”);
write(f3,! “world”);
fsync(f3),

New set_stream() call

- All updates after set_stream(X) associated with stream X
- When process forks, previous stream is adopted

Application A Application B
pwrite(f1, 0,),

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

40

New set_stream() call

- All updates after set_stream(X) associated with stream X
- When process forks, previous stream is adopted

Using streams is easy

- Add a single set_stream() call in beginning of application
- Backward-compatible: set_stream() is no-op in older FSes

41

set_stream() is versatile

- Many applications can be assigned the same stream
- Threads within an application can use different streams
- Single thread can keep switching between streams

42

set_stream() is versatile

- Many applications can be assigned the same stream
- Threads within an application can use different streams
- Single thread can keep switching between streams

Ordering vs durability: stream_sync(), IGNORE_FSYNC flag

- Applications use fsync() for both ordering and durability ichidambaram et al., sOSP2013]
- IGNORE_FSYNC ignores fsync(), respects stream_sync()

43

In an ordered FS, false dependencies cause overhead

- Inherent overhead, independent of technique used

Streams provide order only within application

- Writes across applications can be re-ordered for performance
- For consistency, ordering required only within application

Easy to use!

44

Outline

Introduction

Background

Stream API

Crash-Consistent File System
Evaluation

Conclusion

“Crash consistent file system”

- Efficient implementation of stream abstraction

46

“Crash consistent file system”

- Efficient implementation of stream abstraction

Basic design: Based on ext4 with data-journaling

- Ext4 data-journaling guarantees global ordering
- Ordering across all applications: false dependencies
- CCFS uses separate transactions for each stream

47

“Crash consistent file system”

- Efficient implementation of stream abstraction

Basic design: Based on ext4 with data-journaling

- Ext4 data-journaling guarantees global ordering
- Ordering across all applications: false dependencies
- CCFS uses separate transactions for each stream

Multiple challenges

48

Ext4 Journaling: Global Order

Ext4 has 1) main-memory structure, “running transaction”,

2) on-disk journal structure

Running transaction

Main memory

On-disk journal

49

Ext4 Journaling: Global Order

Application modifications
recorded in main-memory

running transaction

Main memory

Application A

Modify blocks #1,#3

Running transaction

Application B

Modify blocks #2,#4

1

3

On-disk journal

50

Ext4 Journaling: Global Order

On fsync() call running Application A Application B

transaction “committed” to Modify blocks #1,#3

on—diskjournal Modify blocks #2,#4
fsync()

Running transaction

1 3 2 4

Main memory

<‘——”’—”—’—’———

On-disk journal

On fsync() call,

running

transaction “committed” to

on-disk journal

Main memory

Application A

Modify blocks #1,#3

Running transaction

Application B

Modify blocks #2,#4
fsync()

Pl

On-disk journal E 1

52

Further application writes
recorded in new running
transaction and committed

Main memory

Application A

Modify blocks #1,#3

Modify blocks #5,#6

Running transaction

Application B

Modify blocks #2,#4
fsync()

5 6

On-disk journal

3
—
w

53

Further application writes
recorded in new running
transaction and committed

Main memory

Application A Application B

Modify blocks #1,#3

Modify blocks #2,#4
fsync()

Modify blocks #5,#6

Running transaction

5 6

~

On-disk journal

3
—
w

54

Further application writes
recorded in new running
transaction and committed

Main memory

Application A

Modify blocks #1,#3

Modify blocks #5,#6

Running transaction

Application B

Modify blocks #2,#4
fsync()

~

On-disk journal

3
—
w

N
N
end
begin

Y |

55

On system crash, on-disk
journal transactions recovered
atomically, in sequential order

Main memory

Running transaction

On-disk journal

3
—
w

begin

56

On system crash, on-disk
journal transactions recovered
atomically, in sequential order

Global ordering is maintained!

Main memory

Running transaction

On-disk journal E 1 3

begin

57

CCFS: Stream Order

CCFS maintains separate running

transaction per stream

stream-A transaction

Application A

set_stream(A)
Modify blocks #1,#3

Application B

set_stream(B)

Modify blocks #2,#4

stream-B transaction

1

Main memory

3

2

4

On-disk journal

58

CCFS: Stream Order

On fsync(), only that stream is

committed

stream-A transaction

Application A

set_stream(A)
Modify blocks #1,#3

Application B

set_stream(B)

Modify blocks #2,#4
fsync()

stream-B transaction

1

Main memory

3

2

4

P——

—

On-disk journal

59

CCFS: Stream Order

On fsync(), only that stream is

committed

stream-A transaction

Application A Application B

set_stream(A) set_stream(B)
Modify blocks #1,#3
Modify blocks #2,#4
fsync()

stream-B transaction

1

Main memory

3

P—_——

—

On-disk journal E 2

end

60

CCFS: Stream Order

Ordering maintained

within

stream, re-order across streams!

stream-A transaction

Application A Application B

set_stream(A) set_stream(B)
Modify blocks #1,#3
Modify blocks #2,#4
fsync()

stream-B transaction

1

Main memory

3

On-disk journal

3
N

end

61

Example: Two streams updating adjoining dir-entries

Application A Application B

set_stream(A) set_stream(B)
create(/X/A)
create(/X/B)

62

Example: Two streams updating adjoining dir-entries

Application A Application B

Block-1 (belonging to directory X) zigizzfi%g‘) set_stream(B)

Entry-A create(/X/B)
Entry-B

63

Challenge #1: Block-Level Journaling

Two independent streams can

Application A Application B
update same block! PP PP
set_stream(A) set_stream(B)
create(/X/A)
create(/X/B)
Block-1
Entry-A
Entry-B
stream-A tran ; stream-B transaction
AN i
Main memory ? ?

64

Two independent streams can

Application A Application B
update same block! PP PP
set_stream(A) set_stream(B)
create(/X/A)
create(/X/B)
Block-1
Entry-A
Entry-B
stream-A tran ; stream-B transaction
AN I
Main memory ? ?

Faulty solution: Perform journaling at byte-granularity

- Disables optimizations, complicates disk updates

65

Challenge #1: Block-Level Journaling

CCFS solution: L o
Application A Application B
Record runnlng transactions at set_stream(A) set_stream(B)
I create(/X/A)
byte granularity create(/X/B)
stream-A transaction stream-B transaction

Entry-A Entry-B

Main memory

66

Challenge #1: Block-Level Journaling

CCFS solution: L o
Application A Application B
Record running transactions at set_stream(A) set_stream(B)
I create(/X/A)
byte granularity create(/X/B)
Commit at block granularity
stream-A transaction stream-B transaction
- Entry-A Entry-B

-

On-disk journal

67

Challenge #1: Block-Level Journaling

CCFS solution: . L
Application A Application B
Record running transactions at set_stream(A) set_strean(s)
I create(/X/A)
byte granularity create(/X/B)
Commit at block granularity
stream-A transaction stream-B transaction
: Entry-A Entry-B
Main memory ==

Old version /
—

of entry-A

On-disk journal 2

Entire block-1 committed 68

More Challenges ...

1. Both streams update directory’s modification date

- Solution: Delta journaling

69

1. Both streams update directory’s modification date
- Solution: Delta journaling
2. Directory entries contain pointers to adjoining entry

- Solution: Pointer-less data structures

70

1. Both streams update directory’s modification date
- Solution: Delta journaling
2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures
3. Directory entry freed by stream A can be reused by stream B

- Solution: Order-less space reuse

71

1. Both streams update directory’s modification date
- Solution: Delta journaling

2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures

3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse

4. Ordering technique: Data journaling cost

- Solution: Selective data journaling [Chidambaram et al, SOSP 2013]

72

1. Both streams update directory’s modification date
- Solution: Delta journaling
2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures
3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse
4. Ordering technique: Data journaling cost
- Solution: Selective data journaling [Chidambaram et al, SOSP 2013]
5. Ordering technique: Delayed allocation requires re-ordering

- Solution: Order-preserving delayed allocation

73

1. Both streams update directory’s modification date
- Solution: Delta journaling
2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures
3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse
4. Ordering technique: Data journaling cost
- Solution: Selective data journaling [Chidambaram et al, SOSP 2013]
5. Ordering technique: Delayed allocation requires re-ordering

- Solution: Order-preserving delayed allocation

74

Introduction

Background

Stream API

Crash-Consistent File System

Conclusion

1.

Does CCFS solve application vulnerabilities?

76

Does CCFS solve application vulnerabilities?

Tested five applications: LevelDB, SQLite, Git, Mercurial, ZooKeeper
Method similar to previous study (ALICE tool) tpilai et al, 0sDI 2014]

New versions of applications

Default configuration, instead of safe configuration

77

1. Does CCFS solve application vulnerabilities?

Vulnerabilities

Application ext4 ccfs
LevelDB 1 0
SQLite-Roll 0 0
Git 2 0
Mercurial 5 2
ZooKeeper 1 o

Evaluation

1. Does CCFS solve application vulnerabilities?

Vulnerabilities Ext4: 9 Vulnerabilities
Application ext4 ccfs - Consistency lost in LevelDB
- Repository corrupted in Git, Mercurial
LevelDB 1 0 :
- ZooKeeper becomes unavailable
SQLite-Roll o) o)
Git 2 0
Mercurial 5 2
ZooKeeper 1 0

79

1.

Does CCFS solve application vulnerabilities?
Vulnerabilities Ext4: 9 Vulnerabilities
Application ext4 ccfs - Consistency lost in LevelDB
- Repository corrupted in Git, Mercurial
LevelDB 1 0 :
- ZooKeeper becomes unavailable
SQLite-Roll 0 0
Git 2 0
Mercurial 5 2
ZooKeeper 1 o

80

2. Performance within an application

- Do false dependencies reduce performance inside application?
- Or, do we need more than one stream per application?

81

Evaluation

W ext4
m ccfs

g 8aere
RIS

BN 'O

g eesen

g bes

g soveran

g = eue

g e

-

o o
v o

o
—

(48peq s! JaybiH)
31X 0} pazijeuusou ;ndysnoay

2. Performance within an application
1000

82

Evaluation

83

W ext4
m ccfs

l gajenet’
l 10S

Real applications

.“hmammnm.ﬁm

.mhmammmu_h J
. a1umbas
. sa|ljareald
.mmEBucE

! |lewieA

o O o -
o o«
—

(48peq s! JaybiH)
1% 01 pazijeussou ndydnoay

Standar.d Benchmarks

2. Performance within an application
1000

Evaluation

2. Performance within an application

Standard workloads:
Similar performance

Git

q—
5;) 1000 for ext4, ccfs
T & 100
N But ext4 re-orders!
© O
Eo 10 m ext4
: E 1 m ccfs
‘é.@

I
<= 0.1/
2
(@]
k=
|_

randwrite -
createfiles -
——
fileserver -
weisserverJIR
SQLite -
LevelDB -

84

Evaluation

2. Performance within an application

Git under ext4 is slow

because of safer
1000 configuration needed
for correctness

L’.‘: 100 - o) L I

g

w 10 m ext4
o) m ccfs
e

D

L

N

varmail -
randwrite -
createfiles -

e

Throughput: normalized to ext4

seqwrite -
fileserver -
er -
SQLite -
LevelDB -

85

Evaluation

FUEN
RIS m
EE——— 'O
g ‘eMesel
g vbes
Rl

. [rewren
A -

o

SQLite and LevelDB :
Similar performance

00
o o«
—

(48peq s! JaybiH)
31X 0} pazijeuusou ;ndysnoay

2. Performance within an application
1000

86

Throughput: normalized to ext4

Evaluation

2. Performance within an application

But, performance can
be improved with
1000 S IGNORE_FSYNC and

— |
5 100 stream_sync()!
g : .

o 10 : . mext4

O : - mccfs

< 1= : 3

T ; ;

= 01 : -

Git

varmail -
randwrite -
createfiles -
seqwrite -
fileserver -
webserver -

87

Crash consistency: Better than ext4

- 9 vulnerabilities in ext4, 2 minor in CCFS

Performance: Like ext4 with little programmer overhead

- Much better with additional programmer effort

More results in paper!

88

FS crash behavior is currently not standardized

89

FS crash behavior is currently not standardized

Ideal FS behavior can improve application consistency

90

FS crash behavior is currently not standardized
Ideal FS behavior can improve application consistency

Ideal FS behavior is considered bad for performance

91

FS crash behavior is currently not standardized
Ideal FS behavior can improve application consistency
Ideal FS behavior is considered bad for performance

Stream abstraction and CCFS solve this dilemmma

92

FS crash behavior is currently not standardized
Ideal FS behavior can improve application consistency
Ideal FS behavior is considered bad for performance

Stream abstraction and CCFS solve this dilemmma

93

1. LevelDB:
a. creat(tmp); write(tmp); fsync(tmp); rename(tmp, CURRENT); --> unlink(MANIFEST-old);
i. Unable to open the database
b. write(filel, kv1); write(file1, kv2): --> creat(file2, kv3):
i. kvland kv2 might disappear, while kv3 still exists
2. Git
a. append(index.lock) --> rename(index.lock, index)
i. “Corruption “ returned by various Git commands
b. write(tmp); link(tmp, object) --> rename(master.lock, master)
i. “Corruption “ returned by various Git commands
3. HDFS:
a. creat(ckpt); append(ckpt); fsync(ckpt); creat(md5.tmp); append(md5.tmp); fsync(md5.tmp);
rename(md>5.tmp, md5); --> rename(ckpt, fsimage);
i. Unable to boot the server and use the data

One sector overwrite: Atomic because
of device characteristics

Appends: Garbage in some file systems

File systems do not usually provide
atomicity for big writes

Fil t
e system One sector One sector Directory
configuration _ i
overwrite append operation
async X b 4 X
ext2
sync X b 4 X
writeback X X
ext3 ordered X
data-journal b 4
writeback b 4 b 4
ordered b 4
ext4
no-delalloc b 4
data-journal X
btrfs X
default b 4
xfs
X

wsync

One sector overwrite: Atomic because
of device characteristics

Appends: Garbage in some file systems

File systems do not usually provide
atomicity for big writes

Directory operations are usually atomic

Flle.syste.m One sector Onesector | Many sector
configuration _ _
overwrite append write
async X b 4 X
ext2
sync X b 4 X
writeback X b 4
ext3 ordered X
data-journal b 4
writeback b 4 b 4
ordered b 4
ext4
no-delalloc b 4
data-journal X
btrfs X
default b 4
xfs
wsync X

git add filel Application Workload

l

Record strace, memory accesses (for mmap
writes), initial state of datastore

/ \ Trace

Initial state creat(index.lock)

T : creat(tmp)

M“ 81t/ . append(tmp, data, 4K)
fsync(tmp)
link(tmp, permanent)

append(index.lock)
rename(index.lock, index)

a. Convert system calls into atomic modifications

creat(index.lock) > creat(inode=1, dentry=index.lock)
creat(tmp) 5-creat(inode=2, dentry=tmp)

append(tmp, 4K) truncate(inode=2, 1)
truncate(inode=2, 2)

truncate(inode=2, 4K)
- write(inode=2, garbage)
:'write(inode=2, actual data)

fsync(tmp)
link(tmp, permanent) link(inode=2, dentry=permanent)

b. Find ordering dependencies

creat(index.lock) reat(inode=1, dentry=index.lock)
creat(tmp) creat(inode=2, dentry=tmp)
append(tmp, 4K) truncate(inode=2, 1)

truncate(inode=2, 2)

truncate(inode=2, 4K)
write(inode=2, garbage)
write(inode=2, actual data)

fsync(tmp)
link(tmp, permanent) link(inode=2, dentry=permanent)

c. Choose a few sets of modifications obeying dependencies
Set 1:

creat(inode=1, dentry=index.lock) creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp) <all truncates and writes to inode 2>
truncate(inode=2, 1)

truncate(inode=2, 2) Set 2:

s _ creat(inode=1, dentry=index.lock)
truncate(inode=2, 4K) <all truncates and writes to inode 2>
write(inode=2, garbage) link(inode=2, dentry=permanent)
write(inode=2, actual data) .

L Set 3:

creat(inode=1, dentry=index.lock)
link(inode=2, dentry=permanent) creat(inode=2, dentry=tmp)
truncate(inode=2, 1)

... nore sets

Calculating Crash States from a Trace

d. Reconstruct states from sets of modifications

Set 1:

creat(inode=1, dentry=index.lock)
<all truncates and writes to i1node 2>

> .git/index.lock (0)

Set 2:

creat(inode=1, dentry=index.lock) .git/index.lock (0)
<all truncates and writes to inode 2> .git/permanent (4K)
link(inode=2, dentry=permanent)

Set 3:

creat(inode=1, dentry=index.lock) .git/index.lock (0)
creat(inode=2, dentry=tmp) .git/tmp (1)
truncate(inode=2, 1)

... more sets

Checking ALC on Intermediate States

Multiple Possible Intermediate States

.git/tmp (4K:garbage)
.git/index.lock (1K)

.git/tmp (4K)
.git/index (1K)

.git/permanent (4K)
.git/tmp (4K)
.git/index (0K)

l

git status; git fsck;

l l l

ERROR CORRECT OUTPUT CORRECT OUTPUT

Applications implement complex update protocols

- Aiming for both correctness and performance
- Each protocol is different

Update protocols hard to implement and test

Applications many and varied
- Little effort to test each

Unfortunately, file systems make ALC more difficult

Persistence models used by us to find vulnerabilites

But, persistence models can be complex

- Example:write() ordered before unlink() iff they act on the

same directory andwrite() is more than 4KB
- Useful for verifying ALC atop a file system

Persistence models not suitable to discuss ALC

- Is fsync() required after writes to log file in ext3?
- Or,dowrite() calls persist in-order?

Does FS obey a particular interesting behavior?

- Example: Dowrite() calls persist in-order?
- Arewrite() callsatomic?

Applications typically depend on some properties

- Forgotan fsync(): depends on ordering properties
- Forgot checksum verification: depends on atomicwrite()

Persistence Properties: Example #1

Content-Atomicity of Appends

Does an append result in garbage?

Impossible
System call sequence Intermedia :
/filel “he#@!" ><
Iseek(f1ile1, End of file)

write(file1, “hello”) Allowed

Persistence Properties: Example #2

Ordered Writes

Are the effects of write() sent to disk in-order?

Impossible
System call sequence m
write(file1, “hello”) vorld :>x<:
write(file2, “world"”) Allowed

/Tile1 heHo

mkdir(o/x)
creat(o/x/tmp_y)
append(o/x/tmp_y)
fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)
Ut)isitere/omyecy)

creat(index.lock)
(i) store object
append(index.lock)
renameélndex lock,index)

stdou (ﬁnqsfﬁgg add)

(i) store object
creat(branch.lock)
append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)
rename(branch lock x/branch)
stdgﬂ’% ﬁnls‘fw commlt

mkdir(o/x)
creat(o/x/tmp_y)
append(o/x/tmp_y)
fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)
Ut)isitere/omyecy)

creat(index.lock)
(i) store object
append(index.lock)
renameélndex lock,index)

stdou (ﬁnqsfﬁgg add)

(i) store object
creat(branch.lock)
append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)
rename(branch lock x/branch)
stdgﬂ’% ﬁnls‘fw commlt

O d . mkdir(o/x)
I enng creat(o/x/tmp_y)
append(o/x/tmp_y)
fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)
Ut)isitere/omyecy)

(i) store object
creat(branch.lock)
append(branch.lock)

append(index.lock) append(branch.lock)

renameélndex lock,index) append(logs/branch)

stdout{ ﬁnqsfﬁgg add) append(logs/HEAD)
rename(branch lock x/branch)

stdgb’% ﬂnls‘fw commlt

—
—
—
o
p—
—
=

creat(index.lock)
(i) store object —4

‘@v
A

o= mkdir(o/x)
Durability reat(ofx/tmp_y)
append(o/x/tmp_y)
fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)

WT)isktresomyecy)
(i) store object
creat(index.lock) creat(branch.lock)
(i) store object append(branch.lock)
append(index.lock) append(branch.lock)
rename(index.lock md&? append(logs/branch)
stdoué ﬁnqsfﬁgg add) append(logs/HEAD) —

rename(branch lock x/branch)
stdgﬁ’% ﬁnls‘fw commlt

Vulnerability Study: Patterns

HDFS
ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

o

= '
L
. ===
(S . m Across system-
e mem call atomicity
Atomicity
L [— m Ordering
m Durability
.
. e
-. 4 —
2 4 6 8 10

Vulnerabilities

Vulnerability Study: Patterns

Across syscall atomicity: Few, minor consequences

HDFS
ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

=
E——
e =
 —— — m Across system-
- mmm call atomicity
Atomicity
I ey m Ordering
m Durability
E—
L —
-- 49 —
0 2 4 6 8 10

Vulnerabilities

Vulnerability Study: Patterns

Garbage during appends cause 4 vulnerabilities

File writes seemingly need only sector-level atomicity

ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

I —— — m Across system-
s call atomicity
Atomicity

L [— m Ordering

m Durability
I
L [T
-... A4 T—
0 2 4 6 8 10

Vulnerabilities

Vulnerability Study: Patterns

A separate fsync() on parent directory: 6 vulnerabilities

HDFS
ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

— m Across system-
i —— — mem call atomicity
Atomicity

L [— m Ordering

m Durability
I
[[E
-- 49 I
0 2 4 6 8 10

Vulnerabilities

Vulnerability Study: Patterns

Six applications do not fsync() directory operations

HDFS
ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

— m Across system-
i —— — mem call atomicity
Atomicity

L [— m Ordering

m Durability
I
[[E
-- 49 I
0 2 4 6 8 10

Vulnerabilities

ALICE: Solution

Solution:

1. User supplies application workload

2. Record a system-call trace from workload

3. Use “Abstract Persistence Model” and reconstruct
targeted intermediate states

it 4ddRU - bl
g1t 4 *Riﬂdftﬂser gy onst €S on

creat(index.lock) git/index.lock (0 git status

append(tmp, 4K)

fsync(tmp) E— —> ERROR
link(tmp, perm)

ALICE: Intermediate States #1

Does application need atomicity across system calls?

Method: Crash after each system call

creat(index.lock)
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)

ALICE: Intermediate States #1

Does application need atomicity across system calls?

Method: Crash after each system call

creat(index.lock) « Crash here
creat(tmp)

append(tmp, 4K)

fsync(tmp)

link(tmp, perm)

ALICE: Intermediate States #1

Does application need atomicity across system calls?

Method: Crash after each system call

creat(index.lock)
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)

Crash here

ALICE: Intermediate States #?2

Does application need atomicity of an individual
system call?

Method:

1. Apply all system calls until examined call

Systen%-c aﬁfg}xgﬂﬁu&pwtlal effects of examined call

examined append(tmp, 4K)
fsync(tmp)
link(tmp, perm)

ALICE: Intermediate States #?2

Does application need atomicity of an individual
system call?

Method:

1. Apply all system calls until examined call

2. Apcreat(index.lock) : xamined call
System calI_P creat(tmp) }alpﬁf)f@gé% @Jcllﬁ

examined append(tmp, 4K)
fsync(tmp)
link(tmp, perm)

ALICE: Intermediate States #?2

Does application need atomicity of an individual
system call?

Method:

1. Apply all system calls until examined call

SR . : fth
sl PR 1060 Tobeffects ofexarpicel, ™

examined append(tmp, 4K) > (or)
fsync(tmp) "o A
link(tmp, perm) append(tmp, “#@!%"")

(or)

append(tmp, 1K)

ALICE: Intermediate States #3

Does application need ordering of a system call?
Method:

1. Apply all system calls except examined call ...
2. Crash at different points in trace

System call_, creat(index.lock)
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)

examined

ALICE: Intermediate States #3

Does application need ordering of a system call?
Method:

1. Apply all system calls except examined call ...
2. Crash at different points in trace

System call_, creat(index.lock) Ordering

. creat(tmp) .
examined append(tmp, 4K) examined

fsync(tmp)
link(tmp, perm)

ALICE: Intermediate States #3

Does application need ordering of a system call?
Method:

1. Apply all system calls except examined call ...
2. Crash at different points in trace

System call_, creat(index.lock)

. creat(tmp) .
examined append(tmp, 4K) Order.lng

link(tmp, perm)

Atomicity Ordering
File system . : :
configuration One sector Append Many sector Directory | Overwrite — | Append — Dir-op Append —
overwrite content overwrite operation Any op Any op — Any op Rename
ext?2 e 4
sync v/ v v v v
writeback v/ v v
ext3 ordered V4 V4 V4 v v v
data-journal 4 v/ v v v v v
writeback v/ v v
ordered v/ v/ v/ v v
ext4
no-delalloc 4 V4 v v v v
data-journal v/ v v v v v v
btrfs v v v v v
. default V4 4 v Ve v
xfs
wsync v/ v v v v v

Atomicity Ordering

czlrf‘i;ﬁ?;iirgn One sector Append Many sector Directory | Overwrite — | Append — Dir-op Append — :
overwrite content overwrite operation Any op Any op — Any op Rename I
ext?2 e / i
sync v/ v v v v !
writeback v v v I
ext3 ordered v/ v 4 v v v i
data-journal 4 v v v v v 4 i
writeback v/ v v i
ordered v/ v/ v/ v v I
ext4 '
no-delalloc v/ v/ V4 v ve v I
data-journal v/ v v v v v v i
btrfs / / / % Lo
. default v/ v/ v v v
wsync v/ v v v v v

Vulnerability Study: Goals

Does FS behavior affect applications?

What FS behaviors are important?

s testing for crash vulnerabilities generally helpful?

Not a goal: Comparing correctness among applications

ALICE: Technique

Application Workload

Application

{-I‘\QFIIQI"
N T TGS INGT

ALICE System-ca

Trace

APM: Abstract

v

Persistence

Explorer

W

rasn state

of syscall-1)

Crash state
(Violates atomicity | | (Violates ordering
of syscall-1and 2)

4

Correct |
|

—

Incorrect

Crash vulnerability:

_Re-ordering syscall-1and 2

File systems vary in persistence properties

Application correctness can vary among file systems!

Challenge: Validating application correctness without
assuming a particular underlying file system

Challenge #2: Space Reuse

Data

Data

Data

132

Challenge #2: Space Reuse

Data

Data

Data

truncate(filel);

133

Data

Data

Data

truncate(filel);

creat(file2);

134

Data

Data

Data

truncate(filel);

creat(file2); 35
write(file2. “hello”):

Data

Data

Data

Block pointer manipulation shown
so far occurs in memory

truncate(filel);

creat(file2); 36
write(file2. “hello”):

Data

Data

Data

What if pointer manipulation
occurs in different streams?

Stream 1 Stream 2
(Application 1) (Application 2)

truncate(filel);

creat(file2); 37
write(file2. “hello”):

Challenge #2: Space Reuse

Data

If only one stream commits,
Data FS consistency will be affected

Data Stream 1 Stream 2
(Application 1) (Application 2)

Possible crash state truncate(filel):

creat(file2); 38
write(file2. “hello”):

Each file system behaves differently across a crash

- Behavior across crashes are not standardized
- Behavior can be divided into atomicity and ordering

Atomicity of updates might not be maintained

- Atomicity of file writes
- Other operations: Renaming a file, deleting a file etc.

Ordering of updates might not be maintained

