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Storage must be robust even with system crashes

- Power loss (2016 UPS issues: Github outage, Internet outage across UK)

[source:www.datacenterknowledge.com]
- Kernel bugs [Lu et al., OSDI 2014, Palix et al., ASPLOS 2011, Chou et al., SOSP 2001]

Applications need to implement crash consistency

- E.g., Database applications ensure transactions are atomic

Applications implement crash consistency wrongly

- Pillai et al., OSDI 2014 (11 applications) and zZhou et al, OSDI 2014 (8 databases)
- Conclusion: All applications had some form of incorrectness
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App crash consistency depends on FS behavior

[Pillai et al., OSDI 2014]

- E.g., Bad FS behavior: 60 vulnerabilities in 11 applications
- Good FS behavior: 10 vulnerabilities in 11 applications

FS-level ordering is important for applications

- All writes should (logically) be persisted in their issued order
- Major factor affecting application crash consistency

- Ordering is considered bad for performance
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- Needs a single, backward-compatible change to user code
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Stream abstraction

- Allows FS-level ordering with little performance overhead
- Needs a single, backward-compatible change to user code
- Flexible: More code changes improve performance

Crash-Consistent File System (CCFS)

- Efficient implementation of stream abstraction on ext4
- High performance similar to ext4
- Noticeably higher crash consistency for applications



Introduction

Stream API
Crash-Consistent File System
Evaluation

Conclusion
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Each file system behaves differently across a crash

- Little standardization of behavior across crashes

FS Crash Behavior

— ~

Atomicity Ordering
creat(A);
creat(B);

Effects ofa write()
system call atomic on a
system crash? Possible after crash that B
exists, but A does not?



Each file system behaves differently across a crash

- Little standardization of behavior across crashes

FS Crash Behavior

— ~

/ Atomicity\ Ordering
Directory operations File writes
E.g.. rename() atomic? Entire system call?

Sector-level?



Previous work: App crash consistency vs FS behavior

[Pillai et al., OSDI 2014]



Previous work: App crash consistency vs FS behavior

[Pillai et al., OSDI 2014]

“Vulnerability”: Place in application source code that can lead to
inconsistency,



Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-D)

LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1

GDBM 5 4 2
HSQLDB 10 4

SQLite-Roll 1 1 1
SQLite-WAL 0]

PostgreSQL 1

Git 9 5 2
Mercurial 10 8 3
VMWare 1

HDFS 2 1

ZooKeeper 4 1

Total 60 31 10



Applications

Vulnerabilities Study: Results

File sykstems

—

Ext2-like FS Btrfs Ext3-D)
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0]
PostgreSQL -
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1
Total 60 31 10

Vulnerabilities under safest
application configuration



Vulnerabilities Study: Results

Ordering X X P File-system behavior
Atomicity X v v
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LevelDB-1.15 6 3 1
LMDB 1
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Mercurial 10 8 3
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Vulnerabilities Study: Results

Ordering X X v
ici v v :
Atomicity X Under FS with few guarantees
Ext2-like FS Btrfs Ext3-D) of atomicity and ordering, 60

LevelDB-1.10 10 4 1 vulnerabilities are exposed
LevelDB-1.15 6 3 1
LMDB 1 - Serious consequences:
GDBM 5 4 2 unavailability, data loss
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

o
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Vulnerabilities Study: Results

Ordering X X 4
Atomicity X v v Under btrfs, with atomicity
Ext2-like FS Btrfs Ext3-D) but lots of re-ordering, 31
LevelDB-1.10 10 4 1 vulnerabilities
LevelDB-1.15 6 3 1 .
I MDB 1 - Serious consequences
GDBM 5 4 2
HSQLDB 10 4
SQlLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git ° d>. 2
Mercurial 10 . 8 3 > Repository corruption
VMWare 1
HDFS 2 r
ZooKeeper 4 -1 > Unavailability

Total 60 31 10



Vulnerabilities Study: Results

Ordering X X 4
Atomicity X v v Under data-journaled ext3,
Ext2-like FS Btrfs Ext3-D) with both atomicity and

LevelDB-1.10 10 4 1 ordering, 10 vulnerabilities
LevelDB-1.15 6 3 1 )
IMDB 1 - Minor consequences
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 - 1 —> Documentation error
SQLite-WAL o
PostgreSQL 1
Git 9 5 L2
Mercurial 10 8 . 3 —> Dirstate corruption
VMWare
HDFS 2 1
ZooKeeper 4 1

Total 60 31 10
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Ideal behavior: Ordering, “weak atomicity”

- All file system updates should be persisted in-order
- Wirites can split at sector boundary; everything else atomic

Modern file systems already provide weak atomicity
- E.g.: Default modes of ext4, btrfs, xfs

Only rarely used FS configurations provide ordering

- E.g.: Data-journaling mode of ext4, ext3



File-system behavior affects application consistency

- Behavior is not standardized
- 60 vulnerabilities with ext2-like FS; 10 with well-behaved FS

Desired behavior: Ordering and weak atomicity

-  Weak atomicity already provided by modern file systems
- Ordering provided only by rarely-used FS configurations



Introduction

Background

Crash-Consistent File System
Evaluation

Conclusion
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Some existing file systems preserve order

- Example: ext3 and ext4 under data-journaling mode
- Performance overhead?

New techniques are efficient in maintaining order

- CoW, optimized forms of journaling
- Ordering doesn't require disk-level seeks

Reason:

- Inherent overhead of ordering, irrespective of technique used



False Ordering Dependencies

Application A Application B

31



False Ordering Dependencies

Time Application A Application B

1 pwrite(f1, 0,150 MB);
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False Ordering Dependencies

Application A Application B
pwrite(f1, 0,150 MB);

write(f2, "hello”);
write(f3, “world”);
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False Ordering Dependencies

Application A

pwrite(f1, 0, 150 MB);

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);
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False Ordering Dependencies

In a globally ordered file system ...

Time Application A Application B
1 pwrite(f1, 0,150 MB);
\ _____ f—
L J— ~
2 write , “hello”);
3 writexg, “world"”);
4 fsync(f3);

write(f1) has to be sent
to disk before write(f2)
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False Ordering Dependencies

In a globally ordered file system ...

Time Application A Application B
2 seconds, irrespective
1 pwrite(f1, 0, 150 NB); of implementation used
to get ordering!
2 write(f2, "hello”);
3 write(f3, "world”);
4 fsync(f3),; <«
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False Ordering Dependencies

Problem: Ordering between independent applications

In a globally ordered file system ...

Application A

pwrite(f1, 0, 150 MB);

Application B

2 seconds, irrespective
of implementation used
to get ordering!

write(f2, “hello”);
write(f3, “world”);
fsync(f3); <«

37



Problem: Ordering between independent applications

Solution: Order only within each application

- Avoids performance overhead, provides app consistency

Application A

pwrite(f1, 0, ),

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

38



New abstraction: Order only within a “stream”

- Each application is usually put into a separate stream

Application A Application B
pwrite(f1, 0, ),

write(f2,; “hello”);
write(f3,! “world”);
fsync(f3),




New set_stream() call

- All updates after set_stream(X) associated with stream X
- When process forks, previous stream is adopted

Application A Application B
pwrite(f1, 0, ),

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

40



New set_stream() call

- All updates after set_stream(X) associated with stream X
- When process forks, previous stream is adopted

Using streams is easy

- Add a single set_stream() call in beginning of application
- Backward-compatible: set_stream() is no-op in older FSes

41



set_stream() is versatile

- Many applications can be assigned the same stream
- Threads within an application can use different streams
- Single thread can keep switching between streams
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set_stream() is versatile

- Many applications can be assigned the same stream
- Threads within an application can use different streams
- Single thread can keep switching between streams

Ordering vs durability: stream_sync(), IGNORE_FSYNC flag

- Applications use fsync() for both ordering and durability ichidambaram et al., sOSP2013]
- IGNORE_FSYNC ignores fsync(), respects stream_sync()
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In an ordered FS, false dependencies cause overhead

- Inherent overhead, independent of technique used

Streams provide order only within application

- Writes across applications can be re-ordered for performance
- For consistency, ordering required only within application

Easy to use!

44



Outline

Introduction

Background

Stream API

Crash-Consistent File System
Evaluation

Conclusion



“Crash consistent file system”

- Efficient implementation of stream abstraction
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“Crash consistent file system”

- Efficient implementation of stream abstraction

Basic design: Based on ext4 with data-journaling

- Ext4 data-journaling guarantees global ordering
- Ordering across all applications: false dependencies
- CCFS uses separate transactions for each stream
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“Crash consistent file system”

- Efficient implementation of stream abstraction

Basic design: Based on ext4 with data-journaling

- Ext4 data-journaling guarantees global ordering
- Ordering across all applications: false dependencies
- CCFS uses separate transactions for each stream

Multiple challenges

48



Ext4 Journaling: Global Order

Ext4 has 1) main-memory structure, “running transaction”,

2) on-disk journal structure

Running transaction

Main memory

On-disk journal

49



Ext4 Journaling: Global Order

Application modifications
recorded in main-memory

running transaction

Main memory

Application A

Modify blocks #1,#3

Running transaction

Application B

Modify blocks #2,#4

1

3

On-disk journal
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Ext4 Journaling: Global Order

On fsync() call running Application A Application B

transaction “committed” to Modify blocks #1,#3

on—diskjournal Modify blocks #2,#4
fsync()

Running transaction

1 3 2 4

Main memory

<‘——”’—”—’—’———

On-disk journal




On fsync() call,

running

transaction “committed” to

on-disk journal

Main memory

Application A

Modify blocks #1,#3

Running transaction

Application B

Modify blocks #2,#4
fsync()

Pl

On-disk journal E 1
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Further application writes
recorded in new running
transaction and committed

Main memory

Application A

Modify blocks #1,#3

Modify blocks #5,#6

Running transaction

Application B

Modify blocks #2,#4
fsync()

5 6

On-disk journal

3
—
w
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Further application writes
recorded in new running
transaction and committed

Main memory

Application A Application B

Modify blocks #1,#3

Modify blocks #2,#4
fsync()

Modify blocks #5,#6

Running transaction

5 6

~

On-disk journal

3
—
w
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Further application writes
recorded in new running
transaction and committed

Main memory

Application A

Modify blocks #1,#3

Modify blocks #5,#6

Running transaction

Application B

Modify blocks #2,#4
fsync()

~

On-disk journal

3
—
w

N
N
end
begin

Y |
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On system crash, on-disk
journal transactions recovered
atomically, in sequential order

Main memory

Running transaction

On-disk journal

3
—
w

begin

56



On system crash, on-disk
journal transactions recovered
atomically, in sequential order

Global ordering is maintained!

Main memory

Running transaction

On-disk journal E 1 3

begin
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CCFS: Stream Order

CCFS maintains separate running

transaction per stream

stream-A transaction

Application A

set_stream(A)
Modify blocks #1,#3

Application B

set_stream(B)

Modify blocks #2,#4

stream-B transaction

1

Main memory

3

2

4

On-disk journal
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CCFS: Stream Order

On fsync(), only that stream is

committed

stream-A transaction

Application A

set_stream(A)
Modify blocks #1,#3

Application B

set_stream(B)

Modify blocks #2,#4
fsync()

stream-B transaction

1

Main memory

3

2

4

P——

—

On-disk journal
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CCFS: Stream Order

On fsync(), only that stream is

committed

stream-A transaction

Application A Application B

set_stream(A) set_stream(B)
Modify blocks #1,#3
Modify blocks #2,#4
fsync()

stream-B transaction

1

Main memory

3

P—_——

—

On-disk journal E 2

end
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CCFS: Stream Order

Ordering  maintained

within

stream, re-order across streams!

stream-A transaction

Application A Application B

set_stream(A) set_stream(B)
Modify blocks #1,#3
Modify blocks #2,#4
fsync()

stream-B transaction

1

Main memory

3

On-disk journal

3
N

end
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Example: Two streams updating adjoining dir-entries

Application A Application B

set_stream(A) set_stream(B)
create(/X/A)
create(/X/B)
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Example: Two streams updating adjoining dir-entries

Application A Application B

Block-1 (belonging to directory X) zigizzfi%g‘) set_stream(B)

Entry-A create(/X/B)
Entry-B

63



Challenge #1: Block-Level Journaling

Two independent streams can

Application A Application B
update same block! PP PP
set_stream(A) set_stream(B)
create(/X/A)
create(/X/B)
Block-1
Entry-A
Entry-B
stream-A tran ; stream-B transaction
AN i
Main memory ? ?

64



Two independent streams can

Application A Application B
update same block! PP PP
set_stream(A) set_stream(B)
create(/X/A)
create(/X/B)
Block-1
Entry-A
Entry-B
stream-A tran ; stream-B transaction
AN I
Main memory ? ?

Faulty solution: Perform journaling at byte-granularity

- Disables optimizations, complicates disk updates

65



Challenge #1: Block-Level Journaling

CCFS solution: L o
Application A Application B
Record runnlng transactions at set_stream(A) set_stream(B)
I create(/X/A)
byte granularity create(/X/B)
stream-A transaction stream-B transaction

Entry-A Entry-B

Main memory

66



Challenge #1: Block-Level Journaling

CCFS solution: L o
Application A Application B
Record running transactions at set_stream(A) set_stream(B)
I create(/X/A)
byte granularity create(/X/B)
Commit at block granularity
stream-A transaction stream-B transaction
- Entry-A Entry-B

-

On-disk journal
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Challenge #1: Block-Level Journaling

CCFS solution: . L
Application A Application B
Record running transactions at set_stream(A) set_strean(s)
I create(/X/A)
byte granularity create(/X/B)
Commit at block granularity
stream-A transaction stream-B transaction
: Entry-A Entry-B
Main memory ==

Old version /
—

of entry-A

On-disk journal 2

Entire block-1 committed 68



More Challenges ...

1. Both streams update directory’s modification date

- Solution: Delta journaling
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1. Both streams update directory’s modification date
- Solution: Delta journaling
2. Directory entries contain pointers to adjoining entry

- Solution: Pointer-less data structures
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1. Both streams update directory’s modification date
- Solution: Delta journaling
2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures
3. Directory entry freed by stream A can be reused by stream B

- Solution: Order-less space reuse
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1. Both streams update directory’s modification date
- Solution: Delta journaling

2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures

3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse

4. Ordering technique: Data journaling cost

- Solution: Selective data journaling [Chidambaram et al, SOSP 2013]
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1. Both streams update directory’s modification date
- Solution: Delta journaling
2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures
3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse
4. Ordering technique: Data journaling cost
- Solution: Selective data journaling [Chidambaram et al, SOSP 2013]
5. Ordering technique: Delayed allocation requires re-ordering

- Solution: Order-preserving delayed allocation
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1. Both streams update directory’s modification date
- Solution: Delta journaling
2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures
3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse
4. Ordering technique: Data journaling cost
- Solution: Selective data journaling [Chidambaram et al, SOSP 2013]
5. Ordering technique: Delayed allocation requires re-ordering

- Solution: Order-preserving delayed allocation
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1.

Does CCFS solve application vulnerabilities?
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Does CCFS solve application vulnerabilities?

Tested five applications: LevelDB, SQLite, Git, Mercurial, ZooKeeper
Method similar to previous study (ALICE tool) tpilai et al, 0sDI 2014]

New versions of applications

Default configuration, instead of safe configuration

77



1. Does CCFS solve application vulnerabilities?

Vulnerabilities

Application ext4 ccfs
LevelDB 1 0
SQLite-Roll 0 0
Git 2 0
Mercurial 5 2
ZooKeeper 1 o



Evaluation

1. Does CCFS solve application vulnerabilities?

Vulnerabilities Ext4: 9 Vulnerabilities
Application ext4 ccfs - Consistency lost in LevelDB
- Repository corrupted in Git, Mercurial
LevelDB 1 0 :
- ZooKeeper becomes unavailable
SQLite-Roll o) o)
Git 2 0
Mercurial 5 2
ZooKeeper 1 0
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1.

Does CCFS solve application vulnerabilities?
Vulnerabilities Ext4: 9 Vulnerabilities
Application ext4 ccfs - Consistency lost in LevelDB
- Repository corrupted in Git, Mercurial
LevelDB 1 0 :
- ZooKeeper becomes unavailable
SQLite-Roll 0 0
Git 2 0
Mercurial 5 2
ZooKeeper 1 o
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2. Performance within an application

- Do false dependencies reduce performance inside application?
- Or, do we need more than one stream per application?
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Evaluation

W ext4
m ccfs
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2. Performance within an application
1000
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Evaluation

83

W ext4
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Evaluation

2. Performance within an application

Standard workloads:
Similar performance

Git

q—
5;) 1000 for ext4, ccfs
T & 100
N But ext4 re-orders!
© O
Eo 10 m ext4
: E 1 m ccfs
‘é.@

I
<= 0.1/
2
(@]
k=
|_

randwrite -
createfiles -
——
fileserver -
weisserverJIR
SQLite -
LevelDB -
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Evaluation

2. Performance within an application

Git under ext4 is slow

because of safer
1000 configuration needed
for correctness

L’.‘: 100 - o) L I

g

w 10 m ext4
o) m ccfs
e

D

L

N

varmail -
randwrite -
createfiles -

e

Throughput: normalized to ext4

seqwrite -
fileserver -
er -
SQLite -
LevelDB -
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Evaluation
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SQLite and LevelDB :
Similar performance
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2. Performance within an application
1000

86



Throughput: normalized to ext4

Evaluation

2. Performance within an application

But, performance can
be  improved  with
1000 S IGNORE_FSYNC and

— |
5 100 stream_sync()!
g : .

o 10 : . mext4

O : - mccfs

< 1= : 3

T ; ;

= 01 : -

Git

varmail -
randwrite -
createfiles -
seqwrite -
fileserver -
webserver -
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Crash consistency: Better than ext4

- 9 vulnerabilities in ext4, 2 minor in CCFS

Performance: Like ext4 with little programmer overhead

- Much better with additional programmer effort

More results in paper!
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FS crash behavior is currently not standardized
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FS crash behavior is currently not standardized

Ideal FS behavior can improve application consistency
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FS crash behavior is currently not standardized
Ideal FS behavior can improve application consistency

Ideal FS behavior is considered bad for performance
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FS crash behavior is currently not standardized
Ideal FS behavior can improve application consistency
Ideal FS behavior is considered bad for performance

Stream abstraction and CCFS solve this dilemmma
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FS crash behavior is currently not standardized
Ideal FS behavior can improve application consistency
Ideal FS behavior is considered bad for performance

Stream abstraction and CCFS solve this dilemmma
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1.  LevelDB:
a. creat(tmp); write(tmp); fsync(tmp); rename(tmp, CURRENT); --> unlink(MANIFEST-old);
i. Unable to open the database
b. write(filel, kv1); write(file1, kv2): --> creat(file2, kv3):
i. kvland kv2 might disappear, while kv3 still exists
2. Git
a. append(index.lock) --> rename(index.lock, index)
i. “Corruption “ returned by various Git commands
b.  write(tmp); link(tmp, object) --> rename(master.lock, master)
i. “Corruption “ returned by various Git commands
3. HDFS:
a. creat(ckpt); append(ckpt); fsync(ckpt); creat(md5.tmp); append(md5.tmp); fsync(md5.tmp);
rename(md>5.tmp, md5); --> rename(ckpt, fsimage);
i. Unable to boot the server and use the data



One sector overwrite: Atomic because
of device characteristics

Appends: Garbage in some file systems

File systems do not usually provide
atomicity for big writes

Fil t
e system One sector One sector Directory
configuration _ i
overwrite append operation
async X b 4 X
ext2
sync X b 4 X
writeback X X
ext3 ordered X
data-journal b 4
writeback b 4 b 4
ordered b 4
ext4
no-delalloc b 4
data-journal X
btrfs X
default b 4
xfs
X

wsync




One sector overwrite: Atomic because
of device characteristics

Appends: Garbage in some file systems

File systems do not usually provide
atomicity for big writes

Directory operations are usually atomic

Flle.syste.m One sector Onesector | Many sector
configuration _ _
overwrite append write
async X b 4 X
ext2
sync X b 4 X
writeback X b 4
ext3 ordered X
data-journal b 4
writeback b 4 b 4
ordered b 4
ext4
no-delalloc b 4
data-journal X
btrfs X
default b 4
xfs
wsync X




git add filel  Application Workload

l

Record strace, memory accesses (for mmap
writes), initial state of datastore

/ \ Trace

Initial state creat(index.lock)

T : creat(tmp)

M“ 81t/ . append(tmp, data, 4K)
fsync(tmp)
link(tmp, permanent)

append(index.lock)
rename(index.lock, index)



a. Convert system calls into atomic modifications

creat(index.lock) > creat(inode=1, dentry=index.lock)
creat(tmp) 5-creat(inode=2, dentry=tmp)

append(tmp, 4K) truncate(inode=2, 1)
truncate(inode=2, 2)

truncate(inode=2, 4K)
- write(inode=2, garbage)
:'write(inode=2, actual data)

fsync(tmp)
link(tmp, permanent) link(inode=2, dentry=permanent)



b. Find ordering dependencies

creat(index.lock) reat(inode=1, dentry=index.lock)
creat(tmp) creat(inode=2, dentry=tmp)
append(tmp, 4K) truncate(inode=2, 1)

truncate(inode=2, 2)

truncate(inode=2, 4K)
write(inode=2, garbage)
write(inode=2, actual data)

fsync(tmp)
link(tmp, permanent) link(inode=2, dentry=permanent)



c. Choose a few sets of modifications obeying dependencies
Set 1:

creat(inode=1, dentry=index.lock) creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp) <all truncates and writes to inode 2>
truncate(inode=2, 1)

truncate(inode=2, 2) Set 2:

s _ creat(inode=1, dentry=index.lock)
truncate(inode=2, 4K) <all truncates and writes to inode 2>
write(inode=2, garbage) link(inode=2, dentry=permanent)
write(inode=2, actual data) .

L Set 3:

creat(inode=1, dentry=index.lock)
link(inode=2, dentry=permanent) creat(inode=2, dentry=tmp)
truncate(inode=2, 1)

... nore sets



Calculating Crash States from a Trace

d. Reconstruct states from sets of modifications

Set 1:

creat(inode=1, dentry=index.lock)
<all truncates and writes to i1node 2>

> .git/index.lock (0)

Set 2:

creat(inode=1, dentry=index.lock) .git/index.lock (0)
<all truncates and writes to inode 2> .git/permanent (4K)
link(inode=2, dentry=permanent)

Set 3:

creat(inode=1, dentry=index.lock) .git/index.lock (0)
creat(inode=2, dentry=tmp) .git/tmp (1)
truncate(inode=2, 1)

... more sets




Checking ALC on Intermediate States

Multiple Possible Intermediate States

.git/tmp (4K:garbage)
.git/index.lock (1K)

.git/tmp (4K)
.git/index (1K)

.git/permanent (4K)
.git/tmp (4K)
.git/index (0K)

l

git status; git fsck;

l l l

ERROR CORRECT OUTPUT CORRECT OUTPUT




Applications implement complex update protocols

- Aiming for both correctness and performance
- Each protocol is different

Update protocols hard to implement and test

Applications many and varied
- Little effort to test each

Unfortunately, file systems make ALC more difficult




Persistence models used by us to find vulnerabilites

But, persistence models can be complex

- Example:write() ordered before unlink() iff they act on the

same directory andwrite() is more than 4KB
- Useful for verifying ALC atop a file system

Persistence models not suitable to discuss ALC

- Is fsync() required after writes to log file in ext3?
- Or,dowrite() calls persist in-order?



Does FS obey a particular interesting behavior?

- Example: Dowrite() calls persist in-order?
- Arewrite() callsatomic?

Applications typically depend on some properties

- Forgotan fsync(): depends on ordering properties
- Forgot checksum verification: depends on atomicwrite()



Persistence Properties: Example #1

Content-Atomicity of Appends

Does an append result in garbage?

Impossible
System call sequence Intermedia :
/filel “he#@!" ><
Iseek(f1ile1, End of file)

write(file1, “hello”) Allowed



Persistence Properties: Example #2

Ordered Writes

Are the effects of write() sent to disk in-order?

Impossible
System call sequence m
write(file1, “hello”) vorld :>x<:
write(file2, “world"”) Allowed

/Tile1 heHo




mkdir(o/x)
creat(o/x/tmp_y)
append(o/x/tmp_y)
fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)
Ut)isitere/omyecy)

creat(index.lock)
(i) store object
append(index.lock)
renameélndex lock,index)

stdou (ﬁnqsfﬁgg add)

(i) store object
creat(branch.lock)
append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)
rename(branch lock x/branch)
stdgﬂ’% ﬁnls‘fw commlt



mkdir(o/x)
creat(o/x/tmp_y)
append(o/x/tmp_y)
fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)
Ut)isitere/omyecy)

creat(index.lock)
(i) store object
append(index.lock)
renameélndex lock,index)

stdou (ﬁnqsfﬁgg add)

(i) store object
creat(branch.lock)
append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)
rename(branch lock x/branch)
stdgﬂ’% ﬁnls‘fw commlt



O d . mkdir(o/x)
I enng creat(o/x/tmp_y)
append(o/x/tmp_y)
fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)
Ut)isitere/omyecy)

(i) store object
creat(branch.lock)
append(branch.lock)

append(index.lock) append(branch.lock)

renameélndex lock,index) append(logs/branch)

stdout{ ﬁnqsfﬁgg add) append(logs/HEAD)
rename(branch lock x/branch)

stdgb’% ﬂnls‘fw commlt

—
—
—
o
p—
—
=

creat(index.lock)
(i) store object  —4

‘@v
A



o= mkdir(o/x)
Durability reat(ofx/tmp_y)
append(o/x/tmp_y)
fsync(o/x/tmp_y)
link(o/x/tmp_y, o/x/y)

WT)isktresomyecy)
(i) store object
creat(index.lock) creat(branch.lock)
(i) store object append(branch.lock)
append(index.lock) append(branch.lock)
rename(index.lock md&? append(logs/branch)
stdoué ﬁnqsfﬁgg add) append(logs/HEAD) —

rename(branch lock x/branch)
stdgﬁ’% ﬁnls‘fw commlt



Vulnerability Study: Patterns

HDFS
ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

o

= '
L
. ===
(S . m Across system-
e mem  call atomicity
Atomicity
L [ — m Ordering
m Durability
.
. e
-. 4 —
2 4 6 8 10

Vulnerabilities



Vulnerability Study: Patterns

Across syscall atomicity: Few, minor consequences

HDFS
ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

=
E——
e =
 —— — m Across system-
- mmm call atomicity
Atomicity
I ey m Ordering
m Durability
E—
L —
-- 49 —
0 2 4 6 8 10

Vulnerabilities



Vulnerability Study: Patterns

Garbage during appends cause 4 vulnerabilities

File writes seemingly need only sector-level atomicity

ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

I —— — m Across system-
s call atomicity
Atomicity

L [ — m Ordering

m Durability
I
L [ T
-... A4 T—
0 2 4 6 8 10

Vulnerabilities



Vulnerability Study: Patterns

A separate fsync() on parent directory: 6 vulnerabilities

HDFS
ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

— m Across system-
i —— — mem  call atomicity
Atomicity

L [ — m Ordering

m Durability
I
[ [ E
-- 49 I
0 2 4 6 8 10

Vulnerabilities



Vulnerability Study: Patterns

Six applications do not fsync() directory operations

HDFS
ZooKeeper
VMWare
LMDB
GDBM
Leveldbl.15
Leveldb1.10
PostgreSQL
HSQLDB
Sqlite-WAL
Sqlite-Roll
Mercurial
Git

— m Across system-
i —— — mem  call atomicity
Atomicity

L [ — m Ordering

m Durability
I
[ [ E
-- 49 I
0 2 4 6 8 10

Vulnerabilities



ALICE: Solution

Solution:

1. User supplies application workload

2. Record a system-call trace from workload

3. Use “Abstract Persistence Model” and reconstruct
targeted intermediate states

it 4ddRU - bl
g1t 4 *Riﬂdftﬂser gy onst €S on

creat(index.lock) git/index.lock (0 git status

append(tmp, 4K)

fsync(tmp) E— —>  ERROR
link(tmp, perm)




ALICE: Intermediate States #1

Does application need atomicity across system calls?

Method: Crash after each system call

creat(index.lock)
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)



ALICE: Intermediate States #1

Does application need atomicity across system calls?

Method: Crash after each system call

creat(index.lock) « Crash here
creat(tmp)

append(tmp, 4K)

fsync(tmp)

link(tmp, perm)



ALICE: Intermediate States #1

Does application need atomicity across system calls?

Method: Crash after each system call

creat(index.lock)
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)

Crash here



ALICE: Intermediate States #?2

Does application need atomicity of an individual
system call?

Method:

1. Apply all system calls until examined call

Systen%-c aﬁfg}xgﬂﬁu&pwtlal effects of examined call

examined append(tmp, 4K)
fsync(tmp)
link(tmp, perm)



ALICE: Intermediate States #?2

Does application need atomicity of an individual
system call?

Method:

1. Apply all system calls until examined call

2. Apcreat(index.lock) : xamined call
System calI_P creat(tmp) }alpﬁf)f@gé% @Jcllﬁ

examined append(tmp, 4K)
fsync(tmp)
link(tmp, perm)



ALICE: Intermediate States #?2

Does application need atomicity of an individual
system call?

Method:

1. Apply all system calls until examined call

SR . : fth
sl PR 1060 Tobeffects ofexarpicel, ™

examined append(tmp, 4K) > (or)
fsync(tmp) "o A
link(tmp, perm) append(tmp, “#@!%"")

(or)

append(tmp, 1K)



ALICE: Intermediate States #3

Does application need ordering of a system call?
Method:

1. Apply all system calls except examined call ...
2. Crash at different points in trace

System call_, creat(index.lock)
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)

examined



ALICE: Intermediate States #3

Does application need ordering of a system call?
Method:

1. Apply all system calls except examined call ...
2. Crash at different points in trace

System call_, creat(index.lock) Ordering

. creat(tmp) .
examined append(tmp, 4K) examined

fsync(tmp)
link(tmp, perm)



ALICE: Intermediate States #3

Does application need ordering of a system call?
Method:

1. Apply all system calls except examined call ...
2. Crash at different points in trace

System call_, creat(index.lock)

. creat(tmp) .
examined append(tmp, 4K) Order.lng

link(tmp, perm)



Atomicity Ordering
File system . : :
configuration One sector Append Many sector Directory | Overwrite — | Append — Dir-op Append —
overwrite content overwrite operation Any op Any op — Any op Rename
ext?2 e 4
sync v/ v v v v
writeback v/ v v
ext3 ordered V4 V4 V4 v v v
data-journal 4 v/ v v v v v
writeback v/ v v
ordered v/ v/ v/ v v
ext4
no-delalloc 4 V4 v v v v
data-journal v/ v v v v v v
btrfs v v v v v
. default V4 4 v Ve v
xfs
wsync v/ v v v v v




Atomicity Ordering

czlrf‘i;ﬁ?;iirgn One sector Append Many sector Directory | Overwrite — | Append — Dir-op Append — :
overwrite content overwrite operation Any op Any op — Any op Rename I
ext?2 e / i
sync v/ v v v v !
writeback v v v I
ext3 ordered v/ v 4 v v v i
data-journal 4 v v v v v 4 i
writeback v/ v v i
ordered v/ v/ v/ v v I
ext4 '
no-delalloc v/ v/ V4 v ve v I
data-journal v/ v v v v v v i
btrfs / / / % Lo
. default v/ v/ v v v
wsync v/ v v v v v




Vulnerability Study: Goals

Does FS behavior affect applications?

What FS behaviors are important?

s testing for crash vulnerabilities generally helpful?

Not a goal: Comparing correctness among applications



ALICE: Technique

Application Workload

Application

{-I‘\QFIIQI"
N T TGS INGT

ALICE System-ca

Trace

APM: Abstract

v

Persistence

Explorer

W

rasn state

of syscall-1)

Crash state
(Violates atomicity | | (Violates ordering
of syscall-1and 2)

4

Correct |
|

—

Incorrect

Crash vulnerability:

_Re-ordering syscall-1and 2




File systems vary in persistence properties

Application correctness can vary among file systems!

Challenge: Validating application correctness without
assuming a particular underlying file system



Challenge #2: Space Reuse

Data

Data

Data

132



Challenge #2: Space Reuse

Data

Data

Data

truncate(filel);

133



Data

Data

Data

truncate(filel);

creat(file2);

134



Data

Data

Data

truncate(filel);

creat(file2); 35
write(file2. “hello”):



Data

Data

Data

Block pointer manipulation shown
so far occurs in memory

truncate(filel);

creat(file2); 36
write(file2. “hello”):



Data

Data

Data

What if pointer manipulation
occurs in different streams?

Stream 1 Stream 2
(Application 1) (Application 2)

truncate(filel);

creat(file2); 37
write(file2. “hello”):



Challenge #2: Space Reuse

Data

If only one stream commits,
Data FS consistency will be affected

Data Stream 1 Stream 2
(Application 1) (Application 2)

Possible crash state truncate(filel):

creat(file2); 38
write(file2. “hello”):



Each file system behaves differently across a crash

- Behavior across crashes are not standardized
- Behavior can be divided into atomicity and ordering

Atomicity of updates might not be maintained

- Atomicity of file writes
- Other operations: Renaming a file, deleting a file etc.

Ordering of updates might not be maintained



