
Hanyang University
Texas A&M University
Samsung Electronics

Youjip Won, Jaemin Jung, Gyeongyeol Choi,
Joontaek Oh, Seongbae Son, Jooyoung Hwang, Sangyeun Cho

Barrier Enabled IO Stack for Flash Storage

2Youjip Won et al.USENIX FAST ’18, Oakland, CA

Motivation

3Youjip Won et al.USENIX FAST ’18, Oakland, CA

Modern IO Stack

CacheIO Scheduler

Command
Queue

Host Storage

Dispatch
Queue

HDD

Issue (𝐼) Persist (𝑃)Transfer (𝑋)Dispatch (𝐷)

𝐼 ≠ 𝐷: IO Scheduling

𝐷 ≠ 𝑋: Time out, retry, command priority

X ≠ 𝑃: Cache replacement, page table update algorithm of FTL

Modern IO stack is Orderless.

4Youjip Won et al.USENIX FAST ’18, Oakland, CA

Storage Order

Host Storage

Issue (𝐼) Persist (𝑃)Transfer (𝑋)Dispatch (𝐷)

App’s

𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

Issue (I)

Storage Order: The order in which the data blocks are made durable.

Guaranteeing the storage order

Storage order guarantee
Persist (P)

5Youjip Won et al.USENIX FAST ’18, Oakland, CA

Controlling the Storage Order

Logging Commit Checkpoint

Applications need to control the storage order.

• Database logging

• Filesystem Journaling

• Soft-updates

• COW based filesystem

IO scheduler, dispatch Disk scheduler, FTL

6Youjip Won et al.USENIX FAST ’18, Oakland, CA

Intel Optane
300 K IOPS

UFS 2.0
45K IOPS

NVMe PM1725
1 M IOPS

843TN
70 K IOPS

750 NVMe
500 K IOPS

1 M IOPS

Storage Vendor

Storage

Service Provider

I/O is Bottleneck!!!

1,132 OPS/s

274 OPS/s

2,500 OPS/s

What’s Happening Now....

7Youjip Won et al.USENIX FAST ’18, Oakland, CA

Mobile
Storage

Server StorageHDD

1%

(O
rd

e
re

d
 I

O
)

/
(O

rd
e
rl

e
ss

 I
O

)
(%

)

Overhead of storage order guarantee: write() + fdatasync()

20%

8Youjip Won et al.USENIX FAST ’18, Oakland, CA

Why has IO stack been orderless for the last 50 years?

cache HDD250MB @ 1970’s

In HDD, host cannot control the persist order.

𝐼 = 𝑃 ≡ 𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

Disk Scheduler

9Youjip Won et al.USENIX FAST ’18, Oakland, CA

Enforcing Storage Order in spite of Orderless IO Stack

write (A) ;

write (B) ;

write (A) ;

Transfer-and-flush;

write (B) ;

Interleave the write request with Transfer-and-Flush

Host

Storage
Flush DMA

…

DMA

To enforce transfer order,
block the caller !

write(A); write(B);

To enforce persist order,
drain the cache !

10Youjip Won et al.USENIX FAST ’18, Oakland, CA

Transfer-and-Flush

Host Storage

App’s

11Youjip Won et al.USENIX FAST ’18, Oakland, CA

Overhead of Transfer-and-Flush

NVMe PM1725
2K IOPS

NVMe PM1725
120K IOPS

Ordering Guarantee

< 2%

Buffered IO (IOPS X 103)
0 50 100 150 200 250

5

10

15

20

25

(F
lu

sh
 I

O
)

/
(B

uf
fe

re
d
 I

O
)

(%
)

1351

2131

22962297 584
830 PRO

80 K IOPS

850 PRO
100 K IOPSX25-M

35 K IOPS

2009

1M

0

500 K

Storage Performance (IOPS)

2012 2014 2015

Intel 750
440 K IOPS

~~

PM1725
1 M IOPS

Host

Storage

Host

Storage

12Youjip Won et al.USENIX FAST ’18, Oakland, CA

Developing Barrier-enabled IO Stack

13Youjip Won et al.USENIX FAST ’18, Oakland, CA

Seek and rotational delay.

The host cannot control persist

order.

the IO stack becomes orderless.

use transfer-and-flush to

control the storage order

HDD

Seek and rotational delay

The host may control persist

order.

The IO stack may become order-

preserving.

Control the storage order without

Transfer-and-Flush

Controller

…

… … …

In the era of HDD
(circa 1970)

In the era of SSD
(circa 2000)

14Youjip Won et al.USENIX FAST ’18, Oakland, CA

It is a time to re-think the way to control the storage order.

15Youjip Won et al.USENIX FAST ’18, Oakland, CA

Barrier-enabled IO Stack

Controller

…

… … …

BarrierFS

▪ Order-preserving dispatch

▪ Epoch-based IO scheduling

▪ Barrier write command
Barrier-enabled
Storage

000
……B

……B

Order-preserving
Block Device Layer

▪ Dual-Mode Journaling

▪ fbarrier() / fdatabarrier()

16Youjip Won et al.USENIX FAST ’18, Oakland, CA

Barrier-enabled Storage

Host Storage

File
System

Flash

17Youjip Won et al.USENIX FAST ’18, Oakland, CA

To Control the Persist Order, X = P

barrier command (2005, eMMC)

write (A) ;

write (B) ;

write (C) ;

barrier;

write (D) ;

B

B

18Youjip Won et al.USENIX FAST ’18, Oakland, CA

barrier-write ;
write ;

barrier ;

single command

Barrier Write

write A

write B

barrier-write C

write D

Persisted before

Persisted after

19Youjip Won et al.USENIX FAST ’18, Oakland, CA

With Barrier Write command,

host can control the persist order

𝐼 = 𝑃 ≡ 𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

without flush.

20Youjip Won et al.USENIX FAST ’18, Oakland, CA

Order-preserving Block Device Layer

Host Storage

File
System

Flash

21Youjip Won et al.USENIX FAST ’18, Oakland, CA

Order Preserving Block Device Layer

✓ New request types

✓ Order Preserving Dispatch

✓ Epoch Based IO scheduling

22Youjip Won et al.USENIX FAST ’18, Oakland, CA

Request Types

?
block layer

Cache

{A,B,E} {G,H}

Orderless Order-Preserving

REQ_ORDERED | REQ_BARRIER

REQ_ORDERED

FGH E D C B A HFE D A C B EH E E AG B A H B E

23Youjip Won et al.USENIX FAST ’18, Oakland, CA

Order Preserving Dispatch Module (for D = X)

➢ Ensure that the barrier request is serviced in-order.

Cache

Command
Queue

Storage

Dispatch
Queue

write A

barrier-write B //set the command priority to ‘ORDERED’

write C

BC

Set the command priority of ‘barrier’ type request to ORDERED.

A

24Youjip Won et al.USENIX FAST ’18, Oakland, CA

SCSI Command Priority

✓ Head of the Queue

✓ Ordered (Barely being used)

✓ Simple (Default)

Command QueueDispatch Queue

(HoQ)

Command Queue

(Ordered)

Command Queue

(Simple)

anywhere

Dispatch Queue

Dispatch Queue

25Youjip Won et al.USENIX FAST ’18, Oakland, CA

Order Preserving Dispatch

Host

Storage
DMA

…
DMA

write(A); write(B);

Legacy Dispatch

Host

Storage
DMA

…
DMA

write(A); // “ordered”

write(B); //”simple”

Order Preserving Dispatch

Caller blocks.

DMA transfer overhead

Caller does not block.

No DMA transfer overhead

26Youjip Won et al.USENIX FAST ’18, Oakland, CA

With Order Preserving Dispatch, host can control the transfer order

𝐼 = 𝑃 ≡ 𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

without DMA transfer.

27Youjip Won et al.USENIX FAST ’18, Oakland, CA

Epoch Based IO scheduler (for I = D)

➢ Ensure that the OP requests between the barriers can be freely scheduled.

➢ Ensure that the OP requests does not cross barrier boundary.

➢ Ensure that orderless requests can be freely scheduled independent with

barrier.

Epoch Based IO Scheduler

W1 W2 W3

Epoch Based IO Scheduler

FIFO, CFQ, Deadline

W4 W5 W6 W7

Epoch Based Barrier

Re-assignment

28Youjip Won et al.USENIX FAST ’18, Oakland, CA

Epoch Based IO scheduler (for I = D)

➢ Ensure that the OP requests between the barriers can be freely scheduled.

➢ Ensure that the OP requests does not cross barrier boundary.

➢ Ensure that orderless requests can be freely scheduled independent with

barrier.

Epoch Based IO Scheduler

W2 W3 W1

Epoch Based IO Scheduler

FIFO, CFQ, Deadline

W4 W5 W6 W7

Epoch Based Barrier

Re-assignment

29Youjip Won et al.USENIX FAST ’18, Oakland, CA

Epoch Based IO scheduler (for I = D)

➢ Ensure that the OP requests between the barriers can be freely scheduled.

➢ Ensure that the OP requests does not cross barrier boundary.

➢ Ensure that orderless requests can be freely scheduled independent with

barrier.

Epoch Based IO Scheduler

W2 W3 W1

Epoch Based IO Scheduler

FIFO, CFQ, Deadline

W4 W5 W6 W7

Epoch Based Barrier

Re-assignment

30Youjip Won et al.USENIX FAST ’18, Oakland, CA

Epoch Based IO scheduler (for I = D)

➢ Ensure that the OP requests between the barriers can be freely scheduled.

➢ Ensure that the OP requests does not cross barrier boundary.

➢ Ensure that orderless requests can be freely scheduled independent with

barrier.

Epoch Based IO Scheduler

W2 W3 W1

Epoch Based IO Scheduler

FIFO, CFQ, Deadline

W6 W7 W4 W5

Epoch Based Barrier

Re-assignment

31Youjip Won et al.USENIX FAST ’18, Oakland, CA

Epoch Based IO scheduler (for I = D)

➢ Ensure that the OP requests between the barriers can be freely scheduled.

➢ Ensure that the OP requests does not cross barrier boundary.

➢ Ensure that orderless requests can be freely scheduled independent with

barrier.

Epoch Based IO Scheduler

W2 W3 W1

Epoch Based IO Scheduler

FIFO, CFQ, Deadline

W6 W7 W4 W5

Epoch Based Barrier

Re-assignment

32Youjip Won et al.USENIX FAST ’18, Oakland, CA

With Epoch Based IO Scheduling, host can control the dispatch order

with existing IO scheduler.

𝐼 = 𝑃 ≡ 𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

Epoch-based IO scheduler

Order-preserving dispatch

barrier write

33Youjip Won et al.USENIX FAST ’18, Oakland, CA

Order Preserving Block Device Layer

CacheIO Scheduler

Command
Queue

Host Storage

Dispatch
Queue

Control Storage Order without Transfer-and-Flush !

Flash

File
system

34Youjip Won et al.USENIX FAST ’18, Oakland, CA

Legacy Block Layer (With Transfer-and-Flush)

Host

Storage Flush DMA
…

DMA

write(A); write(B);

Host

Storage

bwrite(A); bwrite(B);

Order Preserving Block Layer

Enforcing the Storage Order

No Flush !

No DMA !

No Context Switch !

35Youjip Won et al.USENIX FAST ’18, Oakland, CA

Barrier-enabled Filesystem

Host Storage

File
System

Flash

36Youjip Won et al.USENIX FAST ’18, Oakland, CA

New primitives for ordering guarantee

✓ fsync()

➢ Dirty pages

➢ journal transaction

➢ Durable

✓ fdatasync()

➢ Dirty pages

➢ durable

✓ fbarrier()

➢ Dirty pages

➢ Journal transaction

➢ durable

✓ fdatabarrier()

➢ Dirty pages

➢ durable

Durability guarantee Ordering guarantee

Journaling

No
journaling

37Youjip Won et al.USENIX FAST ’18, Oakland, CA

fsync() in EXT4

• Two Flushes

• Three DMA Transfers

• A number of Context switches

Filesystem

Storage
DMA

fsync ()

start

JBD

DMA

Flush FUA

fsync ()

end

D JD JC

DMA

{Dirty Pages (D), Journal Logs (JD)} {Journal Commit (JC)}

38Youjip Won et al.USENIX FAST ’18, Oakland, CA

fsync() in BarrierFS

• write Dirty pages ’D’ with order-preserving write

• write Journal Logs ‘JD’ with barrier write

• write Journal Commit Block ‘JC’ with barrier write

• flush

order-preserving write (REQ_ORDERED)

barrier write (REQ _ORDERED|REQ_BARRIER)

order-preserving
block device

JD DJC

Cache

{D,JD} {JC}

BarrierFS
D JCJC

39Youjip Won et al.USENIX FAST ’18, Oakland, CA

Efficient fsync() implementation

✓ fsync() in EXT4

FS

JBD

Storage

start

D JD JCFlush FUA

FS

JBD

Storage

start

Flush

end

end

✓ fsync() in BarrierFS

D JD JC

40Youjip Won et al.USENIX FAST ’18, Oakland, CA

Dual Mode Journaling

• Journal Commit

• Dispatch ‘write JD’ and ‘write JC’ Control plane

• Make JD and JC durable Data Plane

• Dual Mode Journaling

• separate the control plane activity and the data plane activity.

• Separate thread to each

• Commit Thread (Control Plane)

• Flush Thread (Data Plane)

Filesystem

Storage

JBD

D JD JCFlush FUAD

41Youjip Won et al.USENIX FAST ’18, Oakland, CA

Dual Mode Journaling

• Journal Commit

• Dispatch ‘write JD’ and ‘write JC’ Control plane

• Make JD and JC durable Data Plane

• Dual Mode Journaling

• separate the control plane activity and the data plane activity.

• Separate thread to each

• Commit Thread (Control Plane)

• Flush Thread (Data Plane)

Filesystem

Storage

Commit

Flush

Flush

42Youjip Won et al.USENIX FAST ’18, Oakland, CA

Implications of Dual Thread Journaling

✓ Journaling becomes concurrent activity.

……

……

……

✓ Efficient Separation of Ordering Guarantee and Durability Guarantee

……

fsync()

fsync()

fsync()

fsync()

T1

T2

T3

T4

Filesystem

Storage

Commit

Flush

Flush

fbarrier () fsync ()

43Youjip Won et al.USENIX FAST ’18, Oakland, CA

fdatabarrier()

write(fileA, “Hello”) ;

fdatabarrier (fileA) ;

write(fileA, “World”) ;

DMA transfer overhead

Flush overhead

Context switch

Host

Storage

…

DMA DMA

write(“Hello”);//barrier write

write(“World”);

• write Dirty pages ’D’ with order-preserving write

BarrierFS

write(“Hello”);//bwrite

write(“World”);

44Youjip Won et al.USENIX FAST ’18, Oakland, CA

Experiments

▪ Platforms: PC server (Linux 3.16), Smartphone (Galaxy S6 Linux 3.10)

▪ Flash Storages:

▪ Mobile-SSD(UFS2.0, 2ch), Plain-SSD (SM 850, 8ch), Supercap-SSD (SM843, 8ch)

▪ Workload

1. Micro benchmark: Mobibench, FxMark (Microbenchmark)

2. Macro Benchmark: Mobibench(SQLite), filebench(varmail), sysbench(MySQL)

• IO stack

1. Durability guarantee: EXT-DR(fsync()), BFS-DR(fsync())

2. Ordering guarantee: EXT4-OD (fdatasync(), NO-barrier), BFS-OD (fdatabarrier())

45Youjip Won et al.USENIX FAST ’18, Oakland, CA

Benefit of Order-Preserving Dipspatch

Eliminating Flush

Eliminating Transfer-and-Flush

7.5x
2.7x

88x

3.9x

1.4x

211x

Eliminating the transfer overhead is critical.

46Youjip Won et al.USENIX FAST ’18, Oakland, CA

Journaling Scalability

▪ 4 KB Allocating write followed by fsync() [DWSL workload in FxMark]

2x 1.2x

Concurrent Jounrnaling makes Journaling more scalable.

47Youjip Won et al.USENIX FAST ’18, Oakland, CA

Mobile DBMS: SQLite

in single channel
2.8x

in 8 channel
76.5x

Barrier enabled IO stack gets more effective as

the parallelism of the Flash storage increases.

48Youjip Won et al.USENIX FAST ’18, Oakland, CA

Server Workload: varmail / Insert(MySQL)

35x 43x

49Youjip Won et al.USENIX FAST ’18, Oakland, CA

Conclusion

• Modern IO stack is fundamentally driven by the legacy of rotating media.

• In Flash Storage, the PERSIST order can be controlled while in HDD, it cannot.

• In Barrier-enabled IO stack, we eliminate the Transfer-and-Flush in controlling

the storage order.

• To storage vendors,

“Support for barrier command is a must.”

• To service providers,

“IO stack should eliminate not only the flush overhead

but also the transfer overhead.”

50Youjip Won et al.USENIX FAST ’18, Oakland, CA

@2028

Orderless IO (IOPS X 103)

(O
rd

e
re

d
 I

O
)

/
(O

rd
e
rl

e
ss

I
O

)(
%

)

1351

2131

22962297
584

106

100 1,000 100,000

@2018

@2028

10,00010

Barrier-enabled IO Stack

0

20

40

60

80

100

Orderless IO Stack

It is time for a change.

51Youjip Won et al.USENIX FAST ’18, Oakland, CA

https://github.com/ESOS-Lab/barrieriostack

