



# A Study of SSD Reliability in Large Scale Enterprise Storage Deployments

Stathis Maneas, Kaveh Mahdaviani, Tim Emami, Bianca Schroeder

USENIX FAST '20

## Reliability of SSD-based enterprise storage systems

- What we know:
  - Four field studies (distributed data center storage systems).
  - Facebook '15, Google '16, Microsoft '16, Alibaba '19.



## Reliability of SSD-based enterprise storage systems

- What we know:
  - Four field studies (distributed data center storage systems).
  - Facebook '15, Google '16, Microsoft '16, Alibaba '19.
- We focus on *enterprise storage systems*:
  - Different drives, workloads, and reliability mechanisms.
  - High-end drives, reliability is ensured through RAID, etc.



## Reliability of SSD-based enterprise storage systems

- What we know:
  - Four field studies (distributed data center storage systems).
  - Facebook '15, Google '16, Microsoft '16, Alibaba '19.
- We focus on *enterprise storage systems*:
  - Different drives, workloads, and reliability mechanisms.
  - High-end drives, reliability is ensured through RAID, etc.
- Factors that have not been studied before:
  - 3D-TLC NAND.
  - Large Capacity Drives (e.g., 8TB and 15TB).
  - Firmware Versions.
  - RAID Groups.



## Systems Description

- 1.4 million SSDs.
- 2.5 years of data.
- SLC, cMLC, eMLC, 3D-TLC drives.
- 3 manufacturers.
- 18 drive models:
  - 12 different capacities.
- Varying age, usage, and system configurations.



## Replacement Types

Increasing Severity

• Issues can be reported by a drive, the storage layer, the file system, etc.

|   | Category | Туре                      |  |
|---|----------|---------------------------|--|
|   | SL1      | Predictive Failures       |  |
|   |          | Threshold Exceeded        |  |
|   |          | Recommended Failures      |  |
|   | SL2      | Aborted Commands          |  |
|   |          | Disk Ownership I/O Errors |  |
|   |          | Command Timeouts          |  |
|   | SL3      | Lost Writes               |  |
| , | SL4      | SCSI Errors               |  |
|   |          | Unresponsive Drive        |  |

## Replacement Types

• Issues can be reported by a drive, the storage layer, the file system, etc.

|  | Category | Туре                      | Percentage (%) |
|--|----------|---------------------------|----------------|
|  | SL1      | Predictive Failures       | 12.78          |
|  |          | Threshold Exceeded        | 12.73          |
|  |          | Recommended Failures      | 8.93           |
|  | SL2      | Aborted Commands          | 13.56          |
|  |          | Disk Ownership I/O Errors | 3.27           |
|  |          | Command Timeouts          | 1.81           |
|  | SL3      | Lost Writes               | 13.54          |
|  | SL4      | SCSI Errors               | 32.78          |
|  |          | Unresponsive Drive        | 0.60           |

Increasing Severity

## Replacement Types

ncreasing

• Issues can be reported by a drive, the storage layer, the file system, etc.

|     | Category | Туре                      | Percentage (%) |
|-----|----------|---------------------------|----------------|
| 1   |          | Predictive Failures       | 12.78          |
|     | SL1      | Threshold Exceeded        | 12.73          |
|     |          | Recommended Failures      | 8.93           |
| it√ |          | Aborted Commands          | 13.56          |
| ver | SL2      | Disk Ownership I/O Errors | 3.27           |
| Se  |          | Command Timeouts          | 1.81           |
|     | SL3      | Lost Writes               | 13.54          |
| ļ   | SL4      | SCSI Errors               | 32.78          |
|     |          | Unresponsive Drive        | 0.60           |

- SCSI Errors dominate!
- One third of drive replacements are merely preventative based on predictions (Category SL1)!
- SSDs rarely become completely unresponsive!

## How frequently are SSDs replaced?

• Annual Replacement Rate (ARR):

$$ARR = \frac{\#Failed \ Devices}{\#Device \ years}$$

• Annual Replacement Rate (ARR):



• Annual Replacement Rate (ARR):

$$ARR = \frac{\#Failed \ Devices}{\#Device \ years}$$

#### Which factors impact flash reliability?

- Flash Type (SLC, cMLC, eMLC, 3D-TLC).
- Lithography.
- Usage and Age.
- Firmware Version.
- Other factors (see the paper).

• Common expectation: Lower failure rates for SLC (\$\$\$) versus cMLC/eMLC and 3D-TLC.

|     | Common expectation | <b>tion:</b> Lower failure ra | ites for <mark>SLC</mark> (\$\$\$) א | versus <mark>cMLC</mark> /eMLC a | and 3D-TLC. |
|-----|--------------------|-------------------------------|--------------------------------------|----------------------------------|-------------|
| 1.2 |                    |                               |                                      |                                  |             |
| 1   |                    |                               |                                      |                                  |             |
| 0.8 |                    |                               |                                      |                                  |             |
| 0.6 |                    |                               |                                      |                                  |             |
| 0.4 |                    |                               |                                      |                                  |             |
| 0.2 | _                  | Band and a                    | l a sel -                            |                                  |             |
| 0   |                    |                               |                                      |                                  |             |
| L   | SLC CMLC           | eMLC                          | ]                                    |                                  |             |

|     | <ul> <li>Common expectation: Lower failure rates for SLC (\$\$\$) versus cMLC/eMLC and 3D-TLC.</li> </ul> |      |
|-----|-----------------------------------------------------------------------------------------------------------|------|
| 1.2 |                                                                                                           |      |
| 1   |                                                                                                           |      |
| T   |                                                                                                           |      |
| 0.8 |                                                                                                           |      |
| 0.6 |                                                                                                           |      |
| 0.4 |                                                                                                           |      |
| 0.2 |                                                                                                           |      |
| 0   |                                                                                                           |      |
| L   | SLC cMLC                                                                                                  | eMLC |

- SLC drives not necessarily better than MLC drives.
- *eMLC* drives not necessarily better than *cMLC* drives.



- SLC drives not necessarily better than MLC drives.
- *eMLC* drives not necessarily better than *cMLC* drives.
- 3D-TLC drives have the highest replacement rates.

## Lithography

- Compare models with the same flash type.
- Common expectation: Higher failures rates for higher densities.





## Lithography

- Compare models with the same flash type.
- Common expectation: Higher failures rates for higher densities.





- eMLC: models with higher densities (1xnm) have higher replacement rates.
- **3D-TLC:** models with <u>lower</u> densities (V2) have higher replacement rates (the trend is reversed)! <sup>12</sup>

## Usage

- Usage affects the reliability of SSDs, due to wear-out of their cells.
- Percentage of P/E cycles limit used so far.





## Usage

- Usage affects the reliability of SSDs, due to wear-out of their cells.
- Percentage of P/E cycles limit used so far.





- eMLC: The effect of infant mortality is evident!
- **3D-TLC:** The differences are not pronounced, other effects at play (capacity, age).



- Usage affects the reliability of SSDs, due to wear-out of their cells.
- Drive's age (time deployed in production), as an indicator of wear-out.



- Usage affects the reliability of SSDs, due to wear-out of their cells.
- Drive's age (time deployed in production), as an indicator of wear-out.





- Usage affects the reliability of SSDs, due to wear-out of their cells.
- Drive's age (time deployed in production), as an indicator of wear-out.





- Usage affects the reliability of SSDs, due to wear-out of their cells.
- Drive's age (time deployed in production), as an indicator of wear-out.



🔶 3D-TLC 📥 eMLC



- Usage affects the reliability of SSDs, due to wear-out of their cells.
- Drive's age (time deployed in production), as an indicator of wear-out.



Infant mortality is significant (12–15 months)!



- Usage affects the reliability of SSDs, due to wear-out of their cells.
- Drive's age (time deployed in production), as an indicator of wear-out.



- Infant mortality is significant (12–15 months)!
- It takes a long time to stabilize (1.5–2 years)!

- Compare individual firmware versions within the same model:
  - Most SSDs (70%) have the same firmware version in our observation window.
- Consider SSDs which have seen little usage (< 1%).

- Compare individual firmware versions within the same model:
  - Most SSDs (70%) have the same firmware version in our observation window.
- Consider SSDs which have seen little usage (< 1%).



- Compare individual firmware versions within the same model:
  - Most SSDs (70%) have the same firmware version in our observation window.
- Consider SSDs which have seen little usage (< 1%).



- Compare individual firmware versions within the same model:
  - Most SSDs (70%) have the same firmware version in our observation window.
- Consider SSDs which have seen little usage (< 1%).



- A drive's firmware version has a tremendous impact on reliability (by a factor of 3-10X)!
- Firmware updates must be made as easy as possible for customers!

- How frequently do double failures occur?
  - 2% of RAID groups see > 1 failure in our observation window.

- How frequently do double failures occur?
  - 2% of RAID groups see > 1 failure in our observation window.
- How quickly after the first does the second failure happen?



- How frequently do double failures occur?
  - 2% of RAID groups see > 1 failure in our observation window.
- How quickly after the first does the second failure happen?



46% of successive failures occur on the same day!

- How frequently do double failures occur?
  - 2% of RAID groups see > 1 failure in our observation window.
- How quickly after the first does the second failure happen?



- 46% of successive failures occur on the same day!
- Probability of 2nd failure within a week: 2.54%!

- How frequently do double failures occur?
  - 2% of RAID groups see > 1 failure in our observation window.
- How quickly after the first does the second failure happen?



• How are they related to RAID group size?



- 46% of successive failures occur on the same day!
- Probability of 2nd failure within a week: 2.54%!
- The chance of a follow-up failure does not show a direct relationship with RAID group size!

## Conclusion – Final Remarks

- Many aspects different from expectations:
  - A long period of infant mortality!
  - Higher densities not always experience higher replacement rates.
  - SLC not generally more reliable than MLC.
- Firmware versions can have a significant impact on replacements:
  - Make firmware updates as easy and painless as possible!
- Temporally correlated failures within the same RAID group:
  - No evidence that follow-up failures are correlated with RAID group size.
  - Single-parity RAID configurations, data loss analysis, etc.
- Several other metrics and factors that were not presented:
  - Capacity, Bad Blocks, Spare Blocks consumed, etc.
  - Statistical tests.