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MapReduce
A framework for processing parallelizable problems across 
huge data sets using a large number of machines
◦ Invented and used by Google [OSDI’04]
◦ Many implementations

◦ Apache Hadoop, Dryad

◦ From interactive query to massive/batch computation
◦ Nutch, Hive, HBase
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MapReduce Model

… If by your art, 
my dearest 
father, you have
Put the wild 
waters in this 
roar, allay them. 
…

…
If = 8
By = 5
Your = 7
Art = 1
…

…
If
By
Your
Art
…
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Apply a common function to the problem’s input

Generate intermediate data

Process intermediate data for answer

Map
Ma p ( k1,  v1) l i s t ( k2,  k2)

Reduce
Red u ce( k2,  l i s t ( v2) ) l i s t (v3)
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MapReduce

Programming and Execution Model

Map ReducePartition Combine Shuffle/Sort

Map(k1, v1) l i st(k2, k2) Reduce(k2, l i st(v2) ) l i st(v3)

Map Partition Combine

Map Partition Combine

……

ReduceShuffle/Sort

ReduceShuffle/Sort

……
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Hadoop Implementation
Map
◦ Buffered output
◦ Spill to disk

Reduce
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Hadoop Key Designs
Shuffle
◦ All-to-all input data fetching phase in a reduce task
◦ The reduce function will not be performed until its completion
◦ Disk I/O and network intensive

Overlapping shuffle with map tasks
◦ Hadoop allows an early start of the shuffle phase as soon as part of the 

reduce input is available
◦ By default, shuffle is started when 5% of map tasks finished

Fair sharing
◦ Hadoop enforces fairness among users/jobs
◦ Fair share of map and reduce slots
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Issues
Input data skew among reduce tasks
◦ Non-uniform key distribution  Different partition size
◦ Lead to disparity in reduce completion time

Inflexible Scheduling of Reduce Tasks
◦ Reduce tasks are created during job initialization
◦ Tasks are scheduled in ascending order of their ID
◦ Reduce tasks can not start even if all their input partitions are available

Tight coupling of shuffle and reduce
◦ Shuffle starts only when the corresponding reduce is scheduled
◦ Leaving parallelism within and between jobs unexploited

7/3/2013 ICAC'13 ISHUFFLE 7



A Motivating Example

7/3/2013 ICAC'13 ISHUFFLE 8

Workload: tera-sort with 4GB dataset
Platform: 10-node Hadoop cluster
1 map and 1 reduce slots  per node



Related Work
Map Scheduling in Hadoop
◦ Accelerating straggler Task: [OSDI’08]
◦ Enforcing Fairness: [Middleware’10], [EuroSys’10]

Improving reduce performance
◦ Push-based shuffling: [NSDI’10]
◦ RDMA-based acceleration: [SC’11]
◦ Specially designed partitioner: [TPDS’12]
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Not applicable to reduce tasks 

Requiring hardware support or not effective in multiple
wave execution



Our Approach
Decouple shuffle phase from reduce tasks
◦ Shuffle as a platform service provided by Hadoop
◦ Pro-actively and deterministically push map output to different slave nodes

Balancing the partition placement
◦ Predict partition sizes during task execution 
◦ Determine which node should a partition been shuffled to
◦ Mitigate data skew

Flexible reduce task scheduling
◦ Assign partitions to reduce tasks only when scheduled
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iShuffle Design

iShuffle
◦ Shuffler
◦ Shuffle Manager
◦ Task Scheduler

Features
◦ User-Transparent Shuffle Service
◦ Shuffle-on-Write
◦ Automated Map Output Placement
◦ Flexible Reduce Task Scheduling
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Shuffle-on-Write
“shuffle” when Hadoop stores intermediate results

Map output collection
◦ MapOutputCollector
◦ DataSpillHandler

Data shuffling
◦ Queuing and Dispatching
◦ Data Size Predictor
◦ Shuffle Manager

Map output merging
◦ Merger
◦ Priority-Queue merge sort
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Partition Placement
Prediction of Partition Sizes
◦ Task characteristics: input data size, map selectivity
◦ Linear model between partition size and input data size
◦ Metrics measured during the task execution

𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗𝐷𝐷𝑖𝑖

Partition Placement Problem
◦ Minimizes the difference of total partition size on different nodes

◦ 𝜎𝜎 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝜇𝜇 − ∑𝑗𝑗∈𝑠𝑠𝑖𝑖 𝑝𝑝𝑗𝑗
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Heuristic Placement Algorithm
Largest Partition First (LPF)
◦ Pick the largest partition first
◦ Place it to node with the least total 

partition size
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Flexible Reduce Scheduling
Assign Partitions to Reduce Tasks at Runtime
◦ Override the partition assignment at job initialization
◦ Allow tasks to run on any node

Multiple Job Scheduling
◦ Fair scheduling for map tasks
◦ Disabled fair share for reduce tasks
◦ Prevent wasted cluster cycles for waiting unfinished maps
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Experiments
32-node Hadoop Cluster
◦ 1 namenode, 1 jobtracker, 30 slave nodes
◦ 4 map slots and 2 reduce slots per slave
◦ HDFS Block size = 64 MB
◦ Hadoop version 1.1.1

Hardware
◦ Intel Xeon E5530, 4-core, 2.4 GHz
◦ 4 GB Memory
◦ 1 Gbps Ethernet
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Benchmark
Purdue MapReduce Benchmark Suite (PUMA)
◦ Real data set from Wikipedia, Netflix
◦ Shuffle-heavy and shuffle-light
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Job Input Size (GB) # Map # Reduce Shuffle Vol (GB)

Self-join 250 4000 180 246

Tera-sort 300 4800 180 300

Ranked-inverted-index 220 3520 180 235

K-means 30 480 6 43

Inverted-index 250 4000 180 57

Term-vector 250 4000 180 59

wordcount 250 4000 180 49

Histogram-movies 200 3200 180 0.002

Histogram-ratings 200 3200 180 0.0012

Grep 250 4000 180 0.0013

Shuffle-heavy

Shuffle-light



iShuffle Performance
Execution Trace
◦ Slow start of Hadoop does not eliminate 

shuffle delay for multiple reduce wave
◦ Overhead of remote disk access of 

Hadoop-A [SC’11]
◦ iShuffle has almost no shuffle delay
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iShuffle Performance (cont’d)
Reducing Job Completion Time
◦ 30% and 21% less than vanilla Hadoop and Hadoop-A

Reducing Shuffle Delay
◦ 10x less than vanilla Hadoop in job’s with large shuffle volume
◦ 2x to 3x less than Hadoop-A
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Balanced Partition Placement
Performance improvement by a Balanced Partition 
Placement
◦ 8-12% shorter job completion time
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Multiple Job Performance
Shuffle-heavy + Shuffle-heavy
◦ 8% and 23% improvement on 

tera_sort and inverted-index

Shuffle-heavy + Shuffle-light
◦ 16% and 25% improvement on 

tera_sort and histogram-movies
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Conclusions
Motivations
o Tight coupling of shuffle of reduce
o Inefficient  reduce scheduling
o Parallelism unexploited 

iShuffle
o Proactively push shuffle data
o Balancing map output to mitigate data skew
o Flexible reduce scheduling

Results
o Significantly reducing completion time for shuffle-heavy jobs
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Questions?
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Backup Slides
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iShuffle v.s. Random Placement
iShuffle outperforms randomization -based placement algorithms
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