
iShuffle: Improving Hadoop Performance with
Shuffle-on-Write
YANFEI GUO, J IA RAO, XIAOBO ZHOU
C S D E PA R T M E N T, U N I V E RS I T Y O F C O LO R A D O, C O LO R A D O S P R I N G S

P R E S E N TE D BY YA N F E I G U O

MapReduce
A framework for processing parallelizable problems across
huge data sets using a large number of machines
◦ Invented and used by Google [OSDI’04]
◦ Many implementations

◦ Apache Hadoop, Dryad

◦ From interactive query to massive/batch computation
◦ Nutch, Hive, HBase

7/3/2013 2ICAC'13 ISHUFFLE

MapReduce Model

… If by your art,
my dearest
father, you have
Put the wild
waters in this
roar, allay them.
…

…
If = 8
By = 5
Your = 7
Art = 1
…

…
If
By
Your
Art
…

7/3/2013 3

Apply a common function to the problem’s input

Generate intermediate data

Process intermediate data for answer

Map
Ma p (k1, v1) l i s t (k2, k2)

Reduce
Red u ce(k2, l i s t (v2)) l i s t (v3)

ICAC'13 ISHUFFLE

MapReduce

Programming and Execution Model

Map ReducePartition Combine Shuffle/Sort

Map(k1, v1) l i st(k2, k2) Reduce(k2, l i st(v2)) l i st(v3)

Map Partition Combine

Map Partition Combine

……

ReduceShuffle/Sort

ReduceShuffle/Sort

……

7/3/2013 ICAC'13 ISHUFFLE 4

Hadoop Implementation
Map
◦ Buffered output
◦ Spill to disk

Reduce

7/3/2013 ICAC’13 ISHUFFLE 5

OutputCollector
Collect()

M
ap

pe
r

M
ap

()

Output
BufferPartitioner Combiner

v1, v2, v3 ...k1

...k2

......

v1, v2, v3 ...k7

...k8

......

v1, v2, v3 ...k9

...k1
0

......

P1

P2

...

v1, v2, v3 ...k1

...k2

......

v1, v2, v3 ...k7

...k8

......

v1, v2, v3 ...k9

...k1
0

......

P1

P2

...

SpillThread

v1, v2, v3 ...k1

...k2

......

v1, v2, v3 ...k7

...k8

......

v1, v2, v3 ...k9

...k10

......

P1

P2

...

<k, v>

Input
Split

Map Task

Hadoop Key Designs
Shuffle
◦ All-to-all input data fetching phase in a reduce task
◦ The reduce function will not be performed until its completion
◦ Disk I/O and network intensive

Overlapping shuffle with map tasks
◦ Hadoop allows an early start of the shuffle phase as soon as part of the

reduce input is available
◦ By default, shuffle is started when 5% of map tasks finished

Fair sharing
◦ Hadoop enforces fairness among users/jobs
◦ Fair share of map and reduce slots

7/3/2013 ICAC'13 ISHUFFLE 6

Issues
Input data skew among reduce tasks
◦ Non-uniform key distribution  Different partition size
◦ Lead to disparity in reduce completion time

Inflexible Scheduling of Reduce Tasks
◦ Reduce tasks are created during job initialization
◦ Tasks are scheduled in ascending order of their ID
◦ Reduce tasks can not start even if all their input partitions are available

Tight coupling of shuffle and reduce
◦ Shuffle starts only when the corresponding reduce is scheduled
◦ Leaving parallelism within and between jobs unexploited

7/3/2013 ICAC'13 ISHUFFLE 7

A Motivating Example

7/3/2013 ICAC'13 ISHUFFLE 8

Workload: tera-sort with 4GB dataset
Platform: 10-node Hadoop cluster
1 map and 1 reduce slots per node

Related Work
Map Scheduling in Hadoop
◦ Accelerating straggler Task: [OSDI’08]
◦ Enforcing Fairness: [Middleware’10], [EuroSys’10]

Improving reduce performance
◦ Push-based shuffling: [NSDI’10]
◦ RDMA-based acceleration: [SC’11]
◦ Specially designed partitioner: [TPDS’12]

7/3/2013 ICAC'13 ISHUFFLE 9

Not applicable to reduce tasks

Requiring hardware support or not effective in multiple
wave execution

Our Approach
Decouple shuffle phase from reduce tasks
◦ Shuffle as a platform service provided by Hadoop
◦ Pro-actively and deterministically push map output to different slave nodes

Balancing the partition placement
◦ Predict partition sizes during task execution
◦ Determine which node should a partition been shuffled to
◦ Mitigate data skew

Flexible reduce task scheduling
◦ Assign partitions to reduce tasks only when scheduled

7/3/2013 ICAC'13 ISHUFFLE 10

iShuffle Design

iShuffle
◦ Shuffler
◦ Shuffle Manager
◦ Task Scheduler

Features
◦ User-Transparent Shuffle Service
◦ Shuffle-on-Write
◦ Automated Map Output Placement
◦ Flexible Reduce Task Scheduling

7/3/2013 ICAC'13 ISHUFFLE 11

Shuffle-on-Write
“shuffle” when Hadoop stores intermediate results

Map output collection
◦ MapOutputCollector
◦ DataSpillHandler

Data shuffling
◦ Queuing and Dispatching
◦ Data Size Predictor
◦ Shuffle Manager

Map output merging
◦ Merger
◦ Priority-Queue merge sort

7/3/2013 ICAC'13 ISHUFFLE 12

Partition Placement
Prediction of Partition Sizes
◦ Task characteristics: input data size, map selectivity
◦ Linear model between partition size and input data size
◦ Metrics measured during the task execution

𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗𝐷𝐷𝑖𝑖

Partition Placement Problem
◦ Minimizes the difference of total partition size on different nodes

◦ 𝜎𝜎 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝜇𝜇 − ∑𝑗𝑗∈𝑠𝑠𝑖𝑖 𝑝𝑝𝑗𝑗

7/3/2013 ICAC'13 ISHUFFLE 13

Heuristic Placement Algorithm
Largest Partition First (LPF)
◦ Pick the largest partition first
◦ Place it to node with the least total

partition size

7/3/2013 ICAC'13 ISHUFFLE 14

Flexible Reduce Scheduling
Assign Partitions to Reduce Tasks at Runtime
◦ Override the partition assignment at job initialization
◦ Allow tasks to run on any node

Multiple Job Scheduling
◦ Fair scheduling for map tasks
◦ Disabled fair share for reduce tasks
◦ Prevent wasted cluster cycles for waiting unfinished maps

7/3/2013 ICAC'13 ISHUFFLE 15

Experiments
32-node Hadoop Cluster
◦ 1 namenode, 1 jobtracker, 30 slave nodes
◦ 4 map slots and 2 reduce slots per slave
◦ HDFS Block size = 64 MB
◦ Hadoop version 1.1.1

Hardware
◦ Intel Xeon E5530, 4-core, 2.4 GHz
◦ 4 GB Memory
◦ 1 Gbps Ethernet

7/3/2013 ICAC'13 ISHUFFLE 16

Benchmark
Purdue MapReduce Benchmark Suite (PUMA)
◦ Real data set from Wikipedia, Netflix
◦ Shuffle-heavy and shuffle-light

7/3/2013 ICAC'13 ISHUFFLE 17

Job Input Size (GB) # Map # Reduce Shuffle Vol (GB)

Self-join 250 4000 180 246

Tera-sort 300 4800 180 300

Ranked-inverted-index 220 3520 180 235

K-means 30 480 6 43

Inverted-index 250 4000 180 57

Term-vector 250 4000 180 59

wordcount 250 4000 180 49

Histogram-movies 200 3200 180 0.002

Histogram-ratings 200 3200 180 0.0012

Grep 250 4000 180 0.0013

Shuffle-heavy

Shuffle-light

iShuffle Performance
Execution Trace
◦ Slow start of Hadoop does not eliminate

shuffle delay for multiple reduce wave
◦ Overhead of remote disk access of

Hadoop-A [SC’11]
◦ iShuffle has almost no shuffle delay

7/3/2013 ICAC'13 ISHUFFLE 18

iShuffle Performance (cont’d)
Reducing Job Completion Time
◦ 30% and 21% less than vanilla Hadoop and Hadoop-A

Reducing Shuffle Delay
◦ 10x less than vanilla Hadoop in job’s with large shuffle volume
◦ 2x to 3x less than Hadoop-A

7/3/2013 ICAC'13 ISHUFFLE 19

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

Jo
b

Ex
ec

ut
io

n
Ti

m
e

Hadoop

Hadoop-A

iShuffle 0

2

4

6

8

10

12

14

N
or

m
al

ize
d

Sh
uf

fle
 D

el
ay

Hadoop

Hadoop-A

iShuffle

Balanced Partition Placement
Performance improvement by a Balanced Partition
Placement
◦ 8-12% shorter job completion time

7/3/2013 ICAC'13 ISHUFFLE 20

0.75

0.8

0.85

0.9

0.95

1

1.05

N
or

m
al

ize
d

Jo
b

Ex
ec

ut
io

n
Ti

m
e

Hadoop

Hadoop-A

iShuffle

Multiple Job Performance
Shuffle-heavy + Shuffle-heavy
◦ 8% and 23% improvement on

tera_sort and inverted-index

Shuffle-heavy + Shuffle-light
◦ 16% and 25% improvement on

tera_sort and histogram-movies

7/3/2013 ICAC'13 ISHUFFLE 21

0

500

1000

1500

2000

2500

tera_sort inverted-index

Jo
b

Ex
ec

ut
io

n
Ti

m
e

(s
)

Separate iShuffle

iShuffle w/ HFS

iShuffle w/ HFS_mod

0

500

1000

1500

2000

2500

tera_sort histogram-movies

Jo
b

Ex
ec

ut
io

n
Ti

m
e

(s
)

Separate iShuffle

iShuffle w/ HFS

iShuffle w/ HFS_mod

Conclusions
Motivations
o Tight coupling of shuffle of reduce
o Inefficient reduce scheduling
o Parallelism unexploited

iShuffle
o Proactively push shuffle data
o Balancing map output to mitigate data skew
o Flexible reduce scheduling

Results
o Significantly reducing completion time for shuffle-heavy jobs

7/3/2013 ICAC'13 ISHUFFLE 22

Questions?

7/3/2013 ICAC'13 ISHUFFLE 23

Backup Slides

7/3/2013 ICAC'13 ISHUFFLE 24

iShuffle v.s. Random Placement
iShuffle outperforms randomization -based placement algorithms

7/3/2013 ICAC'13 ISHUFFLE 25

0.9

0.95

1

1.05

1.1

1.15

1.2

N
or

m
al

ize
d

Jo
b

Ex
ec

ut
io

n
Ti

m
e

GREEDY(2)

LPF-GREEDY(2)

iShuffle

	iShuffle: Improving Hadoop Performance with Shuffle-on-Write
	MapReduce
	MapReduce Model
	MapReduce
	Hadoop Implementation
	Hadoop Key Designs
	Issues
	A Motivating Example
	Related Work
	Our Approach
	iShuffle Design
	Shuffle-on-Write
	Partition Placement
	Heuristic Placement Algorithm
	Flexible Reduce Scheduling
	Experiments
	Benchmark
	iShuffle Performance
	iShuffle Performance (cont’d)
	Balanced Partition Placement
	Multiple Job Performance
	Conclusions
	Questions?
	Backup Slides
	iShuffle v.s. Random Placement

