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Micro-clouds for exponentially growing large amounts of
data generated by lots of edge devices
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Using micro clouds for deep learning

* Deep learning tech. based  Incremental deep learning
QA for Wafer fabrication over user data
- Confidential data - Data privacy




Traditional Distributed Deep Learning (DDL)

* One-time learning
* Fixed training data
« Single location

Parameter Server
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Decentralized DDL

+ New considerations

« Data movement restrictions
« Geo-distributed evolving data at many locations

* Online or incremental learning
s
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DLion : Decentralized DDL in micro clouds

 Goals
[ Time ] Faster training time
* [ Accuracy ] More accurate model
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Challenges of learning in micro clouds
1. Compute resource heterogeneity

2. Network resource heterogeneity

3. Scale

Intra micro-cloud Inter micro-cloud
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Challenge 1: Compute resource heterogeneity

« Compute capacity-aware batching
» Adaptive model parameter tuning

» Considerations
« Computation Capacity
* # of workers
 Training progress
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Challenge 2: Network resource heterogeneity

* Network capacity-aware
data exchange

* Considerations
* Available network bandwidth

 Importance of gradients
 # of workers
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Challenge 3: Scale
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Evaluation: Handling compute capacity

73% than Gaia,
74% than Ako,
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Training Time Comparison
(60% accuracy)

3 low- and 1 high-performance workers, Homogeneous network bandwidth
2conv + 2fx model (17MB), CIFAR10 dataset



Evaluation: Handling network capacity

42% than Gaia,
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Model Accuracy Comparison
(30 minutes)

2 micro-clouds (3 workers, 1 worker each), Homogeneous compute capacity
2conv + 2fx model (17MB), CIFAR10 dataset



Conclusion

« Challenges of learning in micro clouds
« Heterogeneous computation capacity
» Heterogeneous network capacity
« Scale

* DLion: Decentralized Distributed Deep Learning System
« To train a DL model in micro-clouds faster and get a higher accuracy

« Techniques
* Weight exchange
« + Computation capacity aware batching + adaptive model param. tuning
» + Network capacity aware data exchange
» Selective data propagation



Thanks!



