<u>DLion</u>

Decentralized Distributed Deep Learning in Micro-Clouds

Rankyung Hong and Abhishek Chandra

HotCloud, July 8, 2019

UNIVERSITY OF MINNESOTA

Micro-clouds for exponentially growing large amounts of data generated by lots of edge devices

Using micro clouds for deep learning

- Deep learning tech. based
 QA for Wafer fabrication
 - Confidential data

- Incremental deep learning over user data
 - Data privacy

Traditional Distributed Deep Learning (DDL)

Centralized DDL

- One-time learning
- Fixed training data
- Single location

Decentralized DDL

+ New considerations

- Data movement restrictions
- Geo-distributed evolving data at many locations
- Online or incremental learning

DLion : Decentralized DDL in micro clouds

• Goals

- [Time] Faster training time
- [Accuracy] More accurate model

Challenges of learning in micro clouds

- 1. Compute resource heterogeneity
- 2. Network resource heterogeneity

Challenge 1: Compute resource heterogeneity

- Compute capacity-aware batching
- Adaptive model parameter tuning
- Considerations
 - Computation Capacity
 - # of workers
 - Training progress

Challenge 2: Network resource heterogeneity

- Network capacity-aware data exchange
- Considerations
 - Available network bandwidth
 - Importance of gradients
 - # of workers

Challenge 3: Scale

- Selective data propagation
- Considerations
 - Amount of Information in gradients
 - Available network bandwidth

Evaluation: Handling compute capacity

3 low- and 1 high-performance workers, Homogeneous network bandwidth 2conv + 2fx model (17MB), CIFAR10 dataset

Evaluation: Handling network capacity

2 micro-clouds (3 workers, 1 worker each), Homogeneous compute capacity 2conv + 2fx model (17MB), CIFAR10 dataset

Conclusion

- Challenges of learning in micro clouds
 - Heterogeneous computation capacity
 - Heterogeneous network capacity
 - Scale
- DLion: Decentralized Distributed Deep Learning System
 - To train a DL model in micro-clouds faster and get a higher accuracy
- Techniques
 - Weight exchange
 - + Computation capacity aware batching + adaptive model param. tuning
 - + Network capacity aware data exchange
 - Selective data propagation

Thanks!