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Machine Learning Frameworks ‒ Two Parts
Machine Learning (ML) frameworks like PyTorch, Tensorflow, etc. typically 
consist of two sub-systems:

○ Data Loading, to generate batches of data, and

○ Training, to compute gradients and update the model
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● Data Loading can be multi-threaded or multi-process
● Runs asynchronously from training
● Requires random accesses to generate batches

○ Randomness leads to faster convergence of the training process
○ Undesirable for HDDs, SSDs

Data Loading for Machine Learning
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The Case for Unifying Data Loading

● Typically, each ML job performs data loading independently

● Inefficient in the cloud
○ Multiple concurrent jobs could be accessing the same dataset

● We propose unifying data loading in a single system: OneAccess
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● We study Hyperparameter Tuning at Microsoft for one month
○ Demonstrates the potential of a unified data loading system in the cloud

● What are Hyperparameters?
○ Hyperparameters determine the configuration of a model

○ The number of hidden layers in a neural network, learning rate for SGD, etc.

● What is Hyperparameter Tuning?
○ Training multiple configurations of a model with different hyperparameters 

○ Choose the best configuration

Case Study: Potential of Unified Data Loading
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● Hyperparameter Tuning using HyperDrive
○ Each launched experiment consists of multiple jobs

○ Each job trains a different configuration of the model on the same dataset

● On an average, each experiment has 35 jobs

Case Study: Hyperparameter Tuning
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Case Study: Concurrent Tuning Jobs
● Not all of the jobs of an experiment are launched concurrently

● We observe that HyperDrive frequently launches 5, 10, or 20 jobs 

simultaneously, and 9 concurrent jobs on an average

● I/O time to fetch data can be reduced by (1-⅑) = 89% if concurrent 

jobs share batches
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Unified Data Loading Using OneAccess
● Two types of processes for data 

loading:
○ Sample Creator(s), for generating 

reservoir samples

○ Batch Creator, for generating 
batches for training

○ More details in the paper

● The distinguishing aspects of 
OneAccess are:

○ Unified Data Loading

○ Sequential Accesses through 
Reservoir Sampling
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Sequential Accesses with Reservoir Sampling
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Evaluation: The Benefit of Unified Data Loading
● We compare the 

conventional 
approach of separate 
data loading, to unified 
data loading with 
OneAccess.

● As fetching data is 
amortized between the 
two jobs, we find that 
the total I/O time 
reduces by 47.3%.
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Total IOPS
(1 epoch)

I/O Time (seconds)

Job 1 Job 2

Separate Data 
Access 50k ✕ 2 14.3 15.1

Unified Data 
Access 50k 15.4

SSD (Samsung 960 EVO) SSD (Samsung 960 EVO)
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Evaluation: The Benefit of Sequential Access
● We compare the 

batch creation time of 
PyTorch against 
OneAccess for the 
MS-COCO dataset 
during one epoch.

● We find that 
OneAccess is 3.6x and 
1.9x faster compared 
to PyTorch with 1 and 2 
workers respectively.

File System - MS COCO File System - MS COCO

OneAccess

vs.

PyTorch

Framework Total Time (min)

PyTorch (1 I/O worker) 23

PyTorch (2 I/O workers) 12

PyTorch (4 I/O workers) 6.8

OneAccess
(1 Sample Creator and 

1 Batch Creator)
6.4

SSD (Samsung 960 EVO) SSD (Samsung 960 EVO)
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Open Challenges
● Unifying data pre-processing across frameworks

○ Sharing pre-processed data across frameworks will require a standard format

● Synchronizing data access across jobs
○ The training speed of different training jobs can be different

○ Jobs can start at different times

○ Jobs can have different batch sizes

● Importance of locality and parallelism
○ It remains to be seen how effective is reservoir sampling across machines in a cluster

○ Extend reservoir sampling to use multiple workers
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● We study data loading in popular ML frameworks

● Make a case for unifying data loading for machine learning in clusters

● We present a case study on Hyperparameter Tuning to demonstrate 

the potential of unified data loading in the cloud

● We develop a prototype system called OneAccess, which has
○ Unified data loading

○ Sequential accesses through reservoir sampling

Conclusions

Thank You!
Aarati Kakaraparthy  |   aaratik@cs.wisc.edu
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Machine Learning Frameworks ‒ Two Parts
Machine Learning (ML) frameworks like PyTorch, Tensorflow, etc. typically 
consist of two sub-systems:

○ Data Loading, to generate batches of data, and

○ Training, to compute gradients and update the model
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● To demonstrate the cost of data loading, we train Resnet-18 on 

MS-COCO Dataset using PyTorch on an Nvidia GTX 1050 GPU

● Increasing the number of workers alleviates the bottleneck of data 

loading

The Cost of Data Loading

Number of PyTorch 
Workers Training Time Data Loading Time Total Time

1 416s 443s 521s

2 309s 250s, 248s 310s

4 309s 124.7s, 125.2s,
125.3s, 125.2 309.7s
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The Case for Unifying Data Loading
● Typically, each ML job performs data loading independently

● Inefficient in the cloud
○ Multiple concurrent jobs could be accessing the same dataset

● We propose unifying data access in a single system: OneAccess
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Case Study: Hyperparameter Tuning Jobs
● The potential benefit of unified data loading

○ If concurrent jobs reuse batches, the I/O cost of fetching data can be reduced by (1-

⅑) = 89%

○ If pre-processed data is persisted, the pre-processing cost can be reduced by       

(1-1/35) = 97%

35 jobs per experiment on an average 9 jobs running concurrently on an average
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