The Case for Unifying Data Loading
IN Machine Learning Clusters

Aarati Kakaraparthy*', Abhay Venkatesh*, Amar Phanishayee’, Shivaram Venkataraman*
University of Wisconsin, Madison* & Microsoft Research’

THE UNOI)/ERSITY M|Cr050ft
WISCONSIN =- Research

Machine Learning Frameworks — Two Parts

Machine Learning (ML) frameworks like PyTorch, Tensorflow, etc. typically
consist of :

o Data Loading, to generate batches of data, and

o Training, to compute gradients and update the model

/Dc’ro Loqding\ 4 Training N

BGTCheS Compufe
N Gradients

§L§j % B o

Preprocess

Data Loading for Machine Learning

e Data Loading can be or
e Runs from fraining
e Requires to generate batches

o Randomness leads to faster convergence of the fraining process
o Undesirable for HDDs, SSDs

______ L
I/Dc’ro Looding\| 4 Training N

™~ Gradients

The Case for Unitying Data Loading
Job 1 1 [Job 2 1

Pre- OneAccess
Fetch process Unified
[Y — | BB | Dataloading

-

Job 1 N Job 2 A
(Data Loading Data Loading
Pre- Pre-
. FetCh process . Fetch process’
N N %
p
File System }

VS.

Vs

-

1

r
L[
Ve

J
~

-

File System

J

Typically, each ML job performs data loading

in the cloud

o Multiple concurrent jobs could be accessing the same dataset

We propose unifying data loading in a single system:

Case Study: Potential of Unified Data Loading

e We study at Microsoft for one month
o Demonstrates the potential of a unified data loading system in the cloud
e What are e
o Hyperparameters determine the of a model

o The number of hidden layers in a neural network, learning rate for SGD, etc.
e Whatis 2

o Training multiple configurations of a model with different hyperparameters

o Choose the

Case Study: Hyperparameter Tuning

e Hyperparameter Tuning using

o Each launched consists of multiple

o Eachjob trains a of the model on the

e On an average, each experiment has

60

50
40 -
30
20+
10

% of experiments

1-5 6-10 16-20 26-30 46-50 96-100
Number of jobs per experiment

Case Study: Concurrent Tuning Jobs

e Not all of the jobs of an experiment are launched concurrently

e We observe that HyperDrive frequently launches 5, 10, or 20 jobs
simultaneously, and on an average

e |/O time to fetch data can be reduced by if concurrent

jobs share batches

50

40 -

% of jobs
[\®] W
F =

=y
(=)
L

o

1 2 3 4 5 8 9 10 17 18 19 20
Number of concurrently running jobs

Uniflied Data Loading Using OneAccess

n

| I—

M

Batch
Creator

—

Y

Sample
Creator 2

SN
SR

/
—» || Batches [*
32 DRAM
S |
3200 C‘V a":f) es
Flash s I
32000 /LE a":f’ e
Dataset ‘ Data Warehouse,

1,000,000

or Disk

Sample
Creator 1

J_I_.
}ﬂ_.

—

Two types of processes for data
loading:

o , for generating
reservoir samples

o , for generating
batches for training

o More details in the paper

The distinguishing aspects of
OneAccess are:

o Data Loading

o through
Reservoir Sampling

Sequential Accesses with Reservoir Sampling

Random Sampling without replacement \/S Reservoir Sampling

Random Random Sample

D1 || D2 || D5 || D6

Sample (Reservoir)

Is part of (® *
current

sample?

D1

Evaluation: The Benefit of Unified Data Loading

[Job1 Job2 | [Job1] [Job2 | e We compare the
[OneAccess] [OneAccess] (OneAccess) conventional
Q) v\) approach of separate
File System - Cifar10 File System - Cifar10 data loading, to unified
(SSD (Samsung 960 EVO) \ [SSD (Samsung 960 EVO) \ data |OCId|ﬂg with
’ - ‘ OneAccess.
Training Jobs/ | Totallops /O Time (seconds) o AS fe’rc;hmg data is
Configuration | (1 epoch) Job] 1ob 2 amortized between the
two jobs, we find that
separate DAt 5ok x 2 14.3 15.1 the
ccess
Unified Data 50K 154

Access
10

Evaluation: The Benefit of Sequential Access

[PyTorch } (
@ @ vs. &

OneAccess

~

[File System - MS COCO] File System - MS COCO

[SSD (Samsung 960 EVO)]

SSD (Samsung 960 EVO)

Framework
PyTorch (1 1/O worker)
PyTorch (2 I/O workers)
PyTorch (4 I/O workers)

OneAccess
(1 Sample Creator and
1 Batch Creator)

Total Time (min)
23
12
6.8

6.4

We compare the

of
PyTorch against
OneAccess for the
MS-COCO dataset
during one epoch.

We find that
OneAccess is and
compared
to PyTorch with 1 and 2
workers respectively.

11

Open Challenges

e Unifying data pre-processing across frameworks
o Sharing pre-processed data across frameworks will require a standard format
e Synchronizing data access across jobs

o The training speed of different training jobs can be different
o Jobs can start at different fimes

o Jobs can have different batch sizes
e Importance of locality and parallelism

o It remains to be seen how effective is reservoir sampling across machines in a cluster

o Extend reservoir sampling to use multiple workers

12

Conclusions

e We study data loading in
e Make a case for
e We present a case study on
the potential of unified data loading in

e We develop a prototype system called
o Unified data loading

for machine learning in clusters
to demonstrate
the cloud

, which has

o Sequential accesses through reservoir sampling

Thank Youl!

Aarati Kakaraparthy | aara

tik@cs.wisc.edu

13

Machine Learning Frameworks — Two Parts

Machine Learning (ML) frameworks like PyTorch, Tensorflow, etc. typically
consist of :

o Data Loading, to generate batches of data, and

o Training, to compute gradients and update the model

Batches

=

D

14

The Cost of Data Loading

e To demonstrate the cost of data loading, we train Resnet-18 on
MS-COCO Dataset using PyTorch on an Nvidia GTX 1050 GPU

e Increasing the number of workers alleviates the bottleneck of data

loading
Number of PyTorch Training Time Data Loading Time Total Time
Workers
1 4165 443s 521s
2 309s 250s, 248s 310s
4 3095 124.7s, 125.2s,

12535, 125.2 30775 .

The Case for Unitying Data Loading

e Typically, each ML job performs data loading

in the cloud

o Multiple concurrent jobs could be accessing the same dataset

e We propose unifying data access in a single system:

Job 1 Job 2
Data Data
Loading Loading

File System

VS.

Vs

Job 1 M Job 2 }

N\

-

Unified Data Loading with
OneAccess

File System

16

Case Study: Hyperparameter Tuning Jobs

e The potential benefit of unified data loading

o If concurrent jobs reuse batches, the I/O cost of fetching data can be reduced by

o If pre-processed data is persisted, the pre-processing cost can be reduced by

60 50
3
8 50 401
i (%]
é 40 "8 30
Q 30+ iy
% 20 S 20
o | X
° 101 10 {
L
0 15 610 1620 26-30 46-50 96-100 7T 7 3 2 5 & 8 10 17 18 19 20
Number of jobs per experiment Number of concurrently running jobs
35 jobs per experiment on an average 9 jobs running concurrently on an average

17

