The Case for Unifying Data Loading
IN Machine Learning Clusters

Aarati Kakaraparthy*', Abhay Venkatesh*, Amar Phanishayee’, Shivaram Venkataraman*
University of Wisconsin, Madison* & Microsoft Research’

THE UNOI)/ERSITY M|Cr050ft
WISCONSIN =- Research




Machine Learning Frameworks — Two Parts

Machine Learning (ML) frameworks like PyTorch, Tensorflow, etc. typically
consist of :

o Data Loading, to generate batches of data, and

o Training, to compute gradients and update the model

/Dc’ro Loqding\ 4 Training N

BGTCheS Compufe
N Gradients

§L§j % B o

Preprocess




Data Loading for Machine Learning

e Data Loading can be or
e Runs from fraining
e Requires to generate batches

o Randomness leads to faster convergence of the fraining process
o Undesirable for HDDs, SSDs
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The Case for Unitying Data Loading
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Typically, each ML job performs data loading

in the cloud

o Multiple concurrent jobs could be accessing the same dataset

We propose unifying data loading in a single system:



Case Study: Potential of Unified Data Loading

e We study at Microsoft for one month
o Demonstrates the potential of a unified data loading system in the cloud
e What are e
o Hyperparameters determine the of a model

o The number of hidden layers in a neural network, learning rate for SGD, etc.
e Whatis 2

o Training multiple configurations of a model with different hyperparameters

o Choose the



Case Study: Hyperparameter Tuning

e Hyperparameter Tuning using

o Each launched consists of multiple

o Eachjob trains a of the model on the

e On an average, each experiment has
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Case Study: Concurrent Tuning Jobs

e Not all of the jobs of an experiment are launched concurrently

e We observe that HyperDrive frequently launches 5, 10, or 20 jobs
simultaneously, and on an average

e |/O time to fetch data can be reduced by if concurrent

jobs share batches
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Uniflied Data Loading Using OneAccess
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Two types of processes for data
loading:

o , for generating
reservoir samples

o , for generating
batches for training

o More details in the paper

The distinguishing aspects of
OneAccess are:

o Data Loading

o through
Reservoir Sampling



Sequential Accesses with Reservoir Sampling

Random Sampling without replacement \/S Reservoir Sampling
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Evaluation: The Benefit of Unified Data Loading
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Evaluation: The Benefit of Sequential Access
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We compare the

of
PyTorch against
OneAccess for the
MS-COCO dataset
during one epoch.

We find that
OneAccess is and
compared
to PyTorch with 1 and 2
workers respectively.
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Open Challenges

e Unifying data pre-processing across frameworks
o Sharing pre-processed data across frameworks will require a standard format
e Synchronizing data access across jobs

o The training speed of different training jobs can be different
o Jobs can start at different fimes

o Jobs can have different batch sizes
e Importance of locality and parallelism

o It remains to be seen how effective is reservoir sampling across machines in a cluster

o Extend reservoir sampling to use multiple workers
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Conclusions

e We study data loading in
e Make a case for
e We present a case study on
the potential of unified data loading in

e We develop a prototype system called
o Unified data loading

for machine learning in clusters
to demonstrate
the cloud

, which has

o Sequential accesses through reservoir sampling

Thank Youl!

Aarati Kakaraparthy | aara

tik@cs.wisc.edu
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Machine Learning Frameworks — Two Parts

Machine Learning (ML) frameworks like PyTorch, Tensorflow, etc. typically
consist of :

o Data Loading, to generate batches of data, and

o Training, to compute gradients and update the model
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The Cost of Data Loading

e To demonstrate the cost of data loading, we train Resnet-18 on
MS-COCO Dataset using PyTorch on an Nvidia GTX 1050 GPU

e Increasing the number of workers alleviates the bottleneck of data

loading
Number of PyTorch Training Time Data Loading Time Total Time
Workers
1 4165 443s 521s
2 309s 250s, 248s 310s
4 3095 124.7s, 125.2s,

12535, 125.2 30775 .



The Case for Unitying Data Loading

e Typically, each ML job performs data loading

in the cloud

o Multiple concurrent jobs could be accessing the same dataset

e We propose unifying data access in a single system:
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Case Study: Hyperparameter Tuning Jobs

e The potential benefit of unified data loading

o If concurrent jobs reuse batches, the I/O cost of fetching data can be reduced by

o If pre-processed data is persisted, the pre-processing cost can be reduced by
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