
The Case for Unifying Data Loading
in Machine Learning Clusters

Aarati Kakaraparthy*†, Abhay Venkatesh*, Amar Phanishayee†, Shivaram Venkataraman*
University of Wisconsin, Madison* & Microsoft Research†

Machine Learning Frameworks ‒ Two Parts
Machine Learning (ML) frameworks like PyTorch, Tensorflow, etc. typically
consist of two sub-systems:

○ Data Loading, to generate batches of data, and

○ Training, to compute gradients and update the model

Fetch
Data Preprocess

Data Loading

Compute
Gradients

Update
Model

Batches

Training

��𝛅 𝒇←𝒇 +𝚫

2

● Data Loading can be multi-threaded or multi-process
● Runs asynchronously from training
● Requires random accesses to generate batches

○ Randomness leads to faster convergence of the training process
○ Undesirable for HDDs, SSDs

Data Loading for Machine Learning

Fetch
Data Preprocess

Data Loading

Compute
Gradients

Update
Model

Batches

Training

��𝛅 𝒇←𝒇 +𝚫

3

The Case for Unifying Data Loading

● Typically, each ML job performs data loading independently

● Inefficient in the cloud
○ Multiple concurrent jobs could be accessing the same dataset

● We propose unifying data loading in a single system: OneAccess

File System

Job 2
...

File System

Job 1 Job 2 ...

OneAccess

vs.
Data Loading

Fetch Pre-
process

Job 1

Job 2

Data Loading

Fetch Pre-
process

Job 2

Fetch
Pre-

process Unified
Data Loading

4

● We study Hyperparameter Tuning at Microsoft for one month
○ Demonstrates the potential of a unified data loading system in the cloud

● What are Hyperparameters?
○ Hyperparameters determine the configuration of a model

○ The number of hidden layers in a neural network, learning rate for SGD, etc.

● What is Hyperparameter Tuning?
○ Training multiple configurations of a model with different hyperparameters

○ Choose the best configuration

Case Study: Potential of Unified Data Loading

5

● Hyperparameter Tuning using HyperDrive
○ Each launched experiment consists of multiple jobs

○ Each job trains a different configuration of the model on the same dataset

● On an average, each experiment has 35 jobs

Case Study: Hyperparameter Tuning

6

Case Study: Concurrent Tuning Jobs
● Not all of the jobs of an experiment are launched concurrently

● We observe that HyperDrive frequently launches 5, 10, or 20 jobs

simultaneously, and 9 concurrent jobs on an average

● I/O time to fetch data can be reduced by (1-⅑) = 89% if concurrent

jobs share batches

7

Unified Data Loading Using OneAccess
● Two types of processes for data

loading:
○ Sample Creator(s), for generating

reservoir samples

○ Batch Creator, for generating
batches for training

○ More details in the paper

● The distinguishing aspects of
OneAccess are:

○ Unified Data Loading

○ Sequential Accesses through
Reservoir Sampling

32

3200

32000

Dataset
1,000,000

8

Sequential Accesses with Reservoir Sampling

D1 D2 D3 D4 D5 D6 ...

Random Sampling without replacement

D5 D2 D6 D1 ...

vs. Reservoir Sampling

Random

Sample

D1 D2 D3 D4 D5 D6 ...

D1 D2 D5 D6 ...Random Sample

(Reservoir)

? ? ? ? ? ?Is part of
current

sample?

9

Evaluation: The Benefit of Unified Data Loading
● We compare the

conventional
approach of separate
data loading, to unified
data loading with
OneAccess.

● As fetching data is
amortized between the
two jobs, we find that
the total I/O time
reduces by 47.3%.

File System - Cifar10

Job 1 Job 2

OneAccess OneAccess

File System - Cifar10

Job 1 Job 2

OneAccess
vs.

Training Jobs/
Configuration

Total IOPS
(1 epoch)

I/O Time (seconds)

Job 1 Job 2

Separate Data
Access 50k ✕ 2 14.3 15.1

Unified Data
Access 50k 15.4

SSD (Samsung 960 EVO) SSD (Samsung 960 EVO)

10

Evaluation: The Benefit of Sequential Access
● We compare the

batch creation time of
PyTorch against
OneAccess for the
MS-COCO dataset
during one epoch.

● We find that
OneAccess is 3.6x and
1.9x faster compared
to PyTorch with 1 and 2
workers respectively.

File System - MS COCO File System - MS COCO

OneAccess

vs.

PyTorch

Framework Total Time (min)

PyTorch (1 I/O worker) 23

PyTorch (2 I/O workers) 12

PyTorch (4 I/O workers) 6.8

OneAccess
(1 Sample Creator and

1 Batch Creator)
6.4

SSD (Samsung 960 EVO) SSD (Samsung 960 EVO)

W W ... SC BC

11

Open Challenges
● Unifying data pre-processing across frameworks

○ Sharing pre-processed data across frameworks will require a standard format

● Synchronizing data access across jobs
○ The training speed of different training jobs can be different

○ Jobs can start at different times

○ Jobs can have different batch sizes

● Importance of locality and parallelism
○ It remains to be seen how effective is reservoir sampling across machines in a cluster

○ Extend reservoir sampling to use multiple workers

12

● We study data loading in popular ML frameworks

● Make a case for unifying data loading for machine learning in clusters

● We present a case study on Hyperparameter Tuning to demonstrate

the potential of unified data loading in the cloud

● We develop a prototype system called OneAccess, which has
○ Unified data loading

○ Sequential accesses through reservoir sampling

Conclusions

Thank You!
Aarati Kakaraparthy | aaratik@cs.wisc.edu

13

Machine Learning Frameworks ‒ Two Parts
Machine Learning (ML) frameworks like PyTorch, Tensorflow, etc. typically
consist of two sub-systems:

○ Data Loading, to generate batches of data, and

○ Training, to compute gradients and update the model

Fetch
Data Preprocess

Data Loading

Batches

𝛅

14

● To demonstrate the cost of data loading, we train Resnet-18 on

MS-COCO Dataset using PyTorch on an Nvidia GTX 1050 GPU

● Increasing the number of workers alleviates the bottleneck of data

loading

The Cost of Data Loading

Number of PyTorch
Workers Training Time Data Loading Time Total Time

1 416s 443s 521s

2 309s 250s, 248s 310s

4 309s 124.7s, 125.2s,
125.3s, 125.2 309.7s

15

The Case for Unifying Data Loading
● Typically, each ML job performs data loading independently

● Inefficient in the cloud
○ Multiple concurrent jobs could be accessing the same dataset

● We propose unifying data access in a single system: OneAccess

File System

Job 1 Job 2

Data
Loading

Data
Loading

...

File System

Job 1 Job 2 ...

Unified Data Loading with
OneAccessvs.

16

Case Study: Hyperparameter Tuning Jobs
● The potential benefit of unified data loading

○ If concurrent jobs reuse batches, the I/O cost of fetching data can be reduced by (1-

⅑) = 89%

○ If pre-processed data is persisted, the pre-processing cost can be reduced by

(1-1/35) = 97%

35 jobs per experiment on an average 9 jobs running concurrently on an average
17

