Tackling Parallelization Challenges of
Kernel Network Stack for Container Overlay Networks

Jiaxin Lei*, Kun Suo™*, Hui Lu*, Jia Rao?

* SUNY at Binghamton
+ University of Texas at Arlington

UNIVERSITY OF

TEXAS

ARLINGTON

BINGHAMTON

UNIVERSITY "

Containers Are Widely Adopted by Industry

e OS level virtualization

e Lightweight

Containers Are Widely Adopted by Industry

e OS level virtualization

e Lightweight

Containers Are Widely Adopted by Industry

e OS level virtualization aW%
e Lightweight A Azure
Google Cloud

 Higher consolidation density

e ower operational cost

>

MESOS .:ﬁ:

pache
kubernetes

Overlay Networks Are the Technique For

Containers Connectivity £ flannel
e Typical overlay network solutions:

PROJECT

" ll ILJ"’ "” ‘ D
o
y ﬁ
=z

* [They are generally built upon the
tunneling approach like using
protocol.

¥, weaveworks

Overlay Networks Are the Technique For

Containers Connectivity £ flannel
e Typical overlay network solutions:

PROJECT

TP CALICO

* [They are generally built upon the
tunneling approach like using

7, weaveworks
protocol.

Inner Ethernet | Inner IP Pavioad
Header Header y

Overlay Networks Are the Technique For

Containers Connectivity — fflannel
e [ypical overlay network solutions:
Docker Overlay, Flannel, Calico, Weave =

PROJECT

(079 CALICD

* [They are generally built upon the
tunneling approach like using
protocol

Outer Ethernet | Outer IP
Header Header

, weaveworks

VXLAN | Inner Ethernet | Inner IP

Overlay Networks Are the Technique For

Containers Connectivity £ flannel
* Typical overlay network solutions: e

Docker Overlay, Flannel, Calico, Weave ==

PROJECT

& 2
(7)) CALICO

* [They are generally built upon the
tunneling approach like using
protocol

Outer Ethernet | Outer IP
Header Header

VXLAN | Inner Ethernet | Inner IP
Flags

' VXLAN Network Identifier

Overlay Networks Are the Technique For

Con_talners Connectlvr_cy £ flannel
e Typical overlay network solutions:

Docker Overlay, Flannel, Calico, Weave

PROJECT

(079 CALICD

* [They are generally built upon the
tunneling approach like using
protocol.

Outer Ethernet | Outer IP
Header Header

7, weaveworks

VXLAN | Inner Ethernet InnerIP
Flags

VXLAN Network Identifier

Overlay Networks Are the Technique For

Con_talners Connectlvr_cy £ flannel
e Typical overlay network solutions:

Docker Overlay, Flannel, Calico, Weave

PROJECT

(079 CALICD

* [They are generally built upon the
tunneling approach like using
protocol.

| r w
Outer Ethernet [Outer IP
Header Header

7, weaveworks

VXLAN | Inner Ethernet InnerIP
Flags

VXLAN Network Identifier

Network Packet Processing Path

. network packet processing path

° virtual devices overhead

Network Packet Processing Path

. network packet processing path

° virtual devices overhead

Receiving Side

Network Packet Processing Path

. network packet processing path

. virtual devices overhead

Receiving Side Kernel Space User Space
NIC . .

Native

Container
Applications

Network Packet Processing Path

. network packet processing path

. virtual devices overhead

Receiving Side Kernel Space User Space
NIC . .

Native

Container
Applications

Network Packet Processing Path

. network packet processing path
. virtual devices overhead
Receiving Side Kernel Space User Space

Native

Container
Applications

Network Packet Processing Path

. network packet processing path
. virtual devices overhead
Receiving Side Kernel Space User Space

NIC Network Stack

Native

Network Packet Processing Path

. network packet processing path
. virtual devices overhead
Receiving Side Kernel Space User Space

Network Stack

Network Packet Processing Path

. network packet processing path
. virtual devices overhead
Receiving Side Kernel Space User Space

. Network Stack

Network Packet Processing Path

. network packet processing path
. virtual devices overhead
Receiving Side Kernel Space User Space

—
{ Network Stack

Network Packet Processing Path

. network packet processing path
. virtual devices overhead
Receiving Side Kernel Space User Space
NIC
Overlay

Container
Applications

Network Packet Processing Path

. network packet processing path

. virtual devices overhead

Receiving Side Kernel Space User Space
Overlay

Container
Applications

Network Packet Processing Path

. network packet processing path

. virtual devices overhead

Receiving Side Kernel Space User Space
Overlay

Container
Applications

Network Packet Processing Path

. network packet processing path

. virtual devices overhead

Receiving Side Kernel Space User Space
Overlay

A4

: Container
vBridge Applications

Network Packet Processing Path

. network packet processing path

. virtual devices overhead

Receiving Side Kernel Space User Space
Overlay

A4

. |vBridge Network Stack Ag;:it:t?;:s

Network Packet Processing Path

. network packet processing path
o virtual devices overhead
Receliving Side Kernel Space User Space

Network Stack

Overlay

A4

. |vBridge Network Stack Ag;:it:t?;:s

Network Packet Processing Path

. network packet processing path
o virtual devices overhead
Receiving Side 5 Kernel Space E User Space

Overlay |
i |vBridge . Network Stack : Agglritzlt?s:ls

Network Packet Processing Path

. network packet processing path
o virtual devices overhead
Receiving Side 5 Kernel Space E User Space

Network Stack VxLAN

: f Container
. |_Applications

Existing Optimizations for Packet Processing

Receiving Side Kernel Space User Space

NIC Network Stack

A4

. |vBridge Network Stack Ag;{i‘;:l't?s:]s

Existing Optimizations for Packet Processing

IRQ
coalescing

Receiving Sidé\ Kernel Space

NIC Network Stack

User Space

. Container
vBridge Network Stack Applications

Existing Optimizations for Packet Processing

IRQ
coalescing
Receivng Sidé\ / Kernel Space User Space

. Container
vBridge Network Stack Applications

Experimental Settings

Hardware Software

CPU Memo NIC Throughput CPU Usage

2.2 GHz 64GB 40Gbps IPert3 mpstat
10 cores Multi-queue

Experimental Settings

Hardware Software

CPU Memo NIC Throughput CPU Usage

2.2 GHz 64GB 40Gbps IPert3 mpstat
10 cores Multi-queue

Experimental Settings

Hardware Software
CPU Memo \|[e Throughput CPU Usage
2.2 GHz 64GB 40Gbps IPert3 mpstat
10 cores Multi-queue
Host1 Host2

Experimental Settings

Hardware Software
CPU \|[e Throughput CPU Usage
2.2 GHz 64GB 40Gbps IPert3 mpstat
10 cores Multi-queue
Host1 Host2 Host1 Host2

--

iPerf3 iPerf3
iPerf3 iPerf3 VxLAN VxLAN
- ethO - ethO ethO ethO

--

Experimental Settings

Q
—
)
=
=
O
7y

Hardware

)
(S
7
-
>
al
O

64GB 40Gbps IPerf3 mpstat
Multi-queue

2.2 GHz
10 cores

"l EH E EH H = HE HE 5B H HE = H H = HE H B H = H H H = = = =H =H = g

lllllllllllllllllllllllllllllllllllll

] .
i @ o
N ' ™o Cc () O) 2
: £@.. . ..58..<..2
i et 275 x®
L . =0 |- m S
' @)
o e e e p
ST T T Tmmmmmsmmsmssmmme=- l_
!
| e e
- ' ™MmCc () O) 2
: £@.. . ..58..<..2
i et 275 x®
L . =0 |- m S
' @)
o e e e p
ST TmTmmmmEmsmsmsmmsmmmme- S
,
N . ® £ o
B t < =
O e % B
L ! —
" >
|
N et e E e . .S e . .- J
ST TmTmmmmEmsmsmsmmsmmmme- S
,
T ® £ o
N ..n A N
O- % lllll ﬂ lllll a
L ! —
" >
|
N et e e e . . . E- J
e iy S
,
AN ! (4P)
B t |2
O. e jed
T o ®
|
|
L J
e iy S
,
- ! ™M
B t |2
O. e jed
T o ®
|
|
‘ J

lllllllllllllllllllllllllllllllllllll

Single Flow Performance

N
&)

N
o

-l
&)

-k
o

&)

Throughput (Gb/s)

o

S1 S3
TCP and UDP Throughputs under

Three Different Cases

Single Flow Performance

Throughput (Gb/s)
n o o O o

o

S1 S3
TCP and UDP Throughputs under

Three Different Cases

e TCP Throughput of
Docker Overlay case

drops 72% compared
with native case.

Single Flow Performance

Throughput (Gb/s)
n o o O o

o

S1 S3
TCP and UDP Throughputs under

Three Different Cases

e TCP Throughput of
Docker Overlay case

drops 72% compared
with native case.

e UDP Throughput
drops 58%.

Single Flow Performance

00
X

o
X

4%

2%

Total CPU Usage

0%

CPU Usage under Three Different
Cases for TCP

* 5% indicates one cpu core is fully saturated.

Single Flow Performance

~5%

O
g 8% SoftIRQ
- 6%
-
?5 4%
-g 2%
|_

0%

S1 S3
CPU Usage under Three Different
Cases for TCP

* 5% indicates one cpu core is fully saturated.

* Packet processing
overhead fully

saturates one cpu
core In two overlay
cases.

Single Flow Performance

10%

~RK0 :
Q 5% Packet processing
o)
@ 8% SoftIRQ overhead fully
D 69 saturates one cpu
> core in two overlay
o)
O 4% cases.
® o .
= 2% e Current solutions
O , ,
= 0o, can’t scale single
° S1 - flow performance.
CPU Usage under Three Different
Cases for TCP

* 5% indicates one cpu core is fully saturated.

Multiple Flows Performance

N
o

W
-

O Native

Throughput (Gb/s)
> S

o

1 2 3 4 5 6 .. 10 20 40 80
Pair Number of Iperf Connection

Multiple Flows Performance

O Native

-l
-

Throughput (Gb/s)

o

1 2 3 4 5 6 .. 10 20 40 80
Pair Number of Iperf Connection

 Native case quickly

reaches ~37 Gbps
under TCP with only

2 pairs.

Multiple Flows Performance

N
o

oo
-

e Native case quickly

reaches ~37 Gbps
under TCP with only

O Native 2 pairs.
Z Linux Overlay | o |n two overlay cases,

Docker Overlay TCP throughput

2 3 4 5 6 .. 10 20 40 80 grows slowly_
Pair Number of Iperf Connection

Throughput (Gb/s)
> S

o
-l

Multiple Flows Performance

N
o

oo
-

e Native case quickly

reaches ~37 Gbps
under TCP with only

O Native 2 pairs.

Z Linux Overlay | o |n two overlay cases,
Docker Overlay TCP throughput

2 3 4 5 6 .. 10 20 40 80 grows slowly_
Pair Number of Iperf Connection

-l
-

Throughput (Gb/s)

o
-l

Multiple Flows Performance

~2.5 times

7 (0)
0% SoftiIRQ

60% |l System
50% | User

40%
30%
20%

Total CPU Usage

10% l I
* RN senmnn mEAE -[_ous =HIY
(0)
1 23456 ..10204080 1 23 456 ..10204080 1 23456 ..10204080
Native Linux Overlay Docker Overlay

Pair Number of Iperf Connection

e Under the same throughput (e.g., 40 Gbps), overlay networks
consume much more CPU resources (e.g., around 2.5 times)
than the native case.

Multiple Flows Performance

~2.5 times
70%
o 0° SoftiRQ
o 0% | System
8 50% . User
g 40%
% 30:/0
_f__," 20% I
O 10% l
= 0% 1 -. _ e -. =
1 23456 ..10204080 123 456 ..10204080 123456 ..10204080
Native Linux Overlay Docker Overlay

Pair Number of Iperf Connection

 Bad scalability is largely due to the inefficient interplay of many
tasks.

Small Packet Performance

240,000

180,000

120,000

60,000 O N.ative
4 Linux Overlay

Docker Overlay

6, 7 S 7 < S
% R By % Mo T o

Packet Size of Iperf Connection

Packet Number /s

0

Small Packet Performance

240,000

180,000

120,000

60,000 O N.ative
4 Linux Overlay

Docker Overlay

Packet Number /s

0

 Docker overlay achieves
as low as 50% packet
processing rate of that
INn the native case.

o) 7 < S 7 < S
7@{)(9@6 ‘< 4294-@743’43’

% o
Packet Size of Iperf Connection

Interrupt Number with Varying Packet Sizes

Interrupt number for TCP Interrupt number for UDP
40,000 O Native 400,000 O Native
;UT 4 Linux Overlay @ 4 Linux Overlay
g 30,000 Docker Overlay ¢ 300,000 Docker Overlay
i i
£ 20,000 £ 200,000
2})
» 10,000 ¢ 100,000
SN SN
©) ©)
o 0 A8 0

76’ @@965‘@69@%@43’ 743’ 6313" 7@ ‘D 629 9@%%& 743’ 6)43’ 76’ {’ 6‘@6\9@) éﬂ%’ 743’ %
SoftIRQ IRQ SoftIRQ
Packet Size of Iperf Connection Packet Size of Iperf Connection

* |RQ number increases dramatically in the Docker overlay UDP
case — 10x of that in the TCP case.

Interrupt Number with Varying Packet Sizes

Interrupt number for TCP Interrupt number for UDP
40,000 O Native 400,000 O Native
@ 4 Linux Overlay @ 4 Linux Overlay
g 30,000 Docker Overlay ¢ 300,000 Docker Overlay
i i
£ 20,000 % 200,000
2) 2)
» 10,000 o 100,000
N N
oc 0 C 0
WG o T Mo Mo T %V Mo T o o Yo % 2 o e Mo Mo Mo % Yoy Mo T o o
IRQ SoftIRQ IRQ SoftIRQ
Packet Size of Iperf Connection Packet Size of Iperf Connection

* |RQ number increases dramatically in the Docker overlay UDP
case — 10x of that in the TCP case.

e 3x softlRQ numbers are observed in Docker Overlay case
compared with the IRQ numbers.

Insights and Conclusions

Insights and Conclusions

e Kernel does not provide

Insights and Conclusions

e Kernel does not provide
e Kernel does not efficiently handle

Insights and Conclusions

e Kernel does not provide
e Kernel does not efficiently handle
e Bottlenecks become more severe for

Insights and Conclusions

e Kernel does not provide

e Kernel does not efficiently handle

* Bottlenecks become more severe for
Thinking about future works:

Insights and Conclusions

e Kernel does not provide

e Kernel does not efficiently handle

* Bottlenecks become more severe for
Thinking about future works:

* |s it feasible to provide packet-level parallelization for a
?

Insights and Conclusions

e Kernel does not provide

e Kernel does not efficiently handle

* Bottlenecks become more severe for
Thinking about future works:

* |s it feasible to provide packet-level parallelization for a
?

* How can the kernel perform a
especially for efficiently utilizing shared hardware resources?

Insights and Conclusions

e Kernel does not provide

e Kernel does not efficiently handle

* Bottlenecks become more severe for
Thinking about future works:

* |s it feasible to provide packet-level parallelization for a
?

* How can the kernel perform a
especially for efficiently utilizing shared hardware resources?

e Can the packets be with optimized network path for
reduced interrupts and context switches”?

Thank you!

