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e Under the same throughput (e.g., 40 Gbps), overlay networks
consume much more CPU resources (e.g., around 2.5 times)
than the native case.
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 Bad scalability is largely due to the inefficient interplay of many
tasks.
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* |RQ number increases dramatically in the Docker overlay UDP
case — 10x of that in the TCP case.

e 3x softlRQ numbers are observed in Docker Overlay case
compared with the IRQ numbers.
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e Kernel does not provide

e Kernel does not efficiently handle

* Bottlenecks become more severe for
Thinking about future works:

* |s it feasible to provide packet-level parallelization for a
?

* How can the kernel perform a
especially for efficiently utilizing shared hardware resources?

e Can the packets be with optimized network path for
reduced interrupts and context switches”?
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