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• Current solutions 
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Multiple Flows Performance

• Bad scalability is largely due to the inefficient interplay of many 
tasks.
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• Docker overlay achieves 
as low as 50% packet 
processing rate of that 
in the native case.
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• IRQ number increases dramatically in the Docker overlay UDP 
case — 10x of that in the TCP case.


• 3x softIRQ numbers are observed in Docker Overlay case 
compared with the IRQ numbers.
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Thinking about future works:
• Is it feasible to provide packet-level parallelization for a single network 

flow?


• How can the kernel perform a better isolation among multiple flows 
especially for efficiently utilizing shared hardware resources?


• Can the packets be further coalesced with optimized network path for 
reduced interrupts and context switches?



Thank you!


