
Tackling Parallelization Challenges of
Kernel Network Stack for Container Overlay Networks

Jiaxin Lei*, Kun Suo+, Hui Lu*, Jia Rao+

* SUNY at Binghamton

+ University of Texas at Arlington

Containers Are Widely Adopted by Industry

•OS level virtualization

•Lightweight

•Higher consolidation density

•Lower operational cost

Containers Are Widely Adopted by Industry

•OS level virtualization

•Lightweight

•Higher consolidation density

•Lower operational cost

Containers Are Widely Adopted by Industry

•OS level virtualization

•Lightweight

•Higher consolidation density

•Lower operational cost

Overlay Networks Are the Technique For
Containers Connectivity
•Typical overlay network solutions:

Docker Overlay, Flannel, Calico, Weave

•They are generally built upon the
tunneling approach like using VxLAN
protocol.

Overlay Networks Are the Technique For
Containers Connectivity

Inner IP
Header

Inner Ethernet
Header Payload

Original L2 Frame

•Typical overlay network solutions:
Docker Overlay, Flannel, Calico, Weave

•They are generally built upon the
tunneling approach like using VxLAN
protocol.

Overlay Networks Are the Technique For
Containers Connectivity

Inner IP
Header

Inner Ethernet
Header Payload

Original L2 Frame

VxLAN
Header

Outer UDP
Header

Outer IP
Header

Outer Ethernet
Header FCS

VxLAN Encapsulated Packet

•Typical overlay network solutions:
Docker Overlay, Flannel, Calico, Weave

•They are generally built upon the
tunneling approach like using VxLAN
protocol.

Overlay Networks Are the Technique For
Containers Connectivity

Inner IP
Header

Inner Ethernet
Header Payload

Original L2 Frame

VxLAN
Header

Outer UDP
Header

Outer IP
Header

Outer Ethernet
Header FCS

VxLAN Encapsulated Packet

VxLAN
Flags Reserved VNI Reserved

VxLAN Network Identifier

•Typical overlay network solutions:
Docker Overlay, Flannel, Calico, Weave

•They are generally built upon the
tunneling approach like using VxLAN
protocol.

Overlay Networks Are the Technique For
Containers Connectivity

Inner IP
Header

Inner Ethernet
Header Payload

Original L2 Frame

VxLAN
Header

Outer UDP
Header

Outer IP
Header

Outer Ethernet
Header FCS

VxLAN Encapsulated Packet

VxLAN
Flags Reserved VNI Reserved

VxLAN Network Identifier

•Typical overlay network solutions:
Docker Overlay, Flannel, Calico, Weave

•They are generally built upon the
tunneling approach like using VxLAN
protocol.

Overlay Networks Are the Technique For
Containers Connectivity

Inner IP
Header

Inner Ethernet
Header Payload

Original L2 Frame

VxLAN
Header

Outer UDP
Header

Outer IP
Header

Outer Ethernet
Header FCS

VxLAN Encapsulated Packet

VxLAN
Flags Reserved VNI Reserved

VxLAN Network Identifier

•Typical overlay network solutions:
Docker Overlay, Flannel, Calico, Weave

•They are generally built upon the
tunneling approach like using VxLAN
protocol.

Network Packet Processing Path
•Prolonged network packet processing path

•Additional virtual devices overhead

Network Packet Processing Path

Receiving Side

•Prolonged network packet processing path

•Additional virtual devices overhead

Native

Network Packet Processing Path

NIC

Receiving Side Kernel Space

Container
Applications

•Prolonged network packet processing path

•Additional virtual devices overhead

Native

User Space

Network Packet Processing Path

NIC

Receiving Side

Container
Applications

IRQ

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Native

Network Packet Processing Path

NIC

Receiving Side

Network Stack

Container
Applications

IRQ SoftIRQ

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Native

Network Packet Processing Path

NIC

Receiving Side

Network Stack

Container
Applications

IRQ SoftIRQ

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Native

Network Packet Processing Path

NIC

Receiving Side

Network Stack

Container
Applications

IRQ SoftIRQ

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Native

Network Packet Processing Path

NIC

Receiving Side

Network Stack

Container
Applications

IRQ SoftIRQ

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Native

Network Packet Processing Path

NIC

Receiving Side

Network Stack

Container
Applications

IRQ SoftIRQ

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Native

Network Packet Processing Path

Container
Applications

NIC

Receiving Side

•Prolonged network packet processing path

•Additional virtual devices overhead

Overlay

Kernel Space User Space

Network Packet Processing Path

Container
Applications

NIC

Receiving Side
IRQ SoftIRQ

Network Stack

•Prolonged network packet processing path

•Additional virtual devices overhead

Overlay

Kernel Space User Space

Network Packet Processing Path

Container
Applications

NIC

Receiving Side
IRQ

VxLAN
SoftIRQ

Network Stack
SoftIRQ

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Overlay

Network Packet Processing Path

Container
Applications

NIC

Receiving Side
IRQ

VxLAN
SoftIRQ

Network Stack
SoftIRQ

vBridge Veth

Packet decapsulation

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Overlay

Network Packet Processing Path

Container
Applications

NIC

Receiving Side
IRQ

VxLAN
SoftIRQ

Network Stack
SoftIRQ

vBridge Veth Network Stack
SoftIRQ

Packet decapsulation

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Overlay

Network Packet Processing Path

Container
Applications

NIC

Receiving Side
IRQ

VxLAN
SoftIRQ

Network Stack
SoftIRQ

vBridge Veth Network Stack
SoftIRQ

Packet decapsulation

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Overlay

Network Packet Processing Path

Container
Applications

NIC

Receiving Side
IRQ

VxLAN
SoftIRQ

Network Stack
SoftIRQ

vBridge Veth Network Stack
SoftIRQ

Packet decapsulation

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Overlay

Network Packet Processing Path

Container
Applications

NIC

Receiving Side
IRQ

VxLAN
SoftIRQ

Network Stack
SoftIRQ

vBridge Veth Network Stack
SoftIRQ

Packet decapsulation

•Prolonged network packet processing path

•Additional virtual devices overhead

Kernel Space User Space

Overlay

Container
Applications

NIC

Receiving Side
IRQ

VxLAN
SoftIRQ

Network Stack
SoftIRQ

vBridge Veth Network Stack
SoftIRQ

Existing Optimizations for Packet Processing

Packet decapsulation

Kernel Space User Space

Container
Applications

NIC

Receiving Side
IRQ

VxLAN
SoftIRQ

Network Stack
SoftIRQ

vBridge Veth Network Stack
SoftIRQ

Existing Optimizations for Packet Processing

Packet decapsulation

IRQ
coalescing GRO

Kernel Space User Space

Container
Applications

NIC

Receiving Side User Space

IRQ
VxLAN

SoftIRQ
Network Stack

SoftIRQ

vBridge Veth Network Stack
SoftIRQ

Existing Optimizations for Packet Processing

Packet decapsulation

IRQ
coalescing GRO RPSMulti-queue

Kernel Space

Experimental Settings
Hardware Software

CPU Memory NIC Throughput CPU Usage
2.2 GHz 64GB 40Gbps iPerf3 mpstat
10 cores Multi-queue

Experimental Settings
Hardware Software

CPU Memory NIC Throughput CPU Usage
2.2 GHz 64GB 40Gbps iPerf3 mpstat
10 cores Multi-queue

S1 - Native S2 - Linux Overlay S3 - Docker Overlay

Experimental Settings

Host1 Host2

eth0

iPerf3 iPerf3

eth0

Hardware Software
CPU Memory NIC Throughput CPU Usage

2.2 GHz 64GB 40Gbps iPerf3 mpstat
10 cores Multi-queue

S1 - Native S2 - Linux Overlay S3 - Docker Overlay

Experimental Settings

Host1 Host2 Host1 Host2

eth0

VxLANiPerf3 iPerf3

iPerf3 iPerf3

eth0 eth0 eth0

VxLAN

Hardware Software
CPU Memory NIC Throughput CPU Usage

2.2 GHz 64GB 40Gbps iPerf3 mpstat
10 cores Multi-queue

S1 - Native S2 - Linux Overlay S3 - Docker Overlay

Experimental Settings

S3 - Docker Overlay

Host1 Host2 Host1 Host2 Host1 Host2

eth0

VxLAN

vBridge

Veth0

iPerf3

iPerf3
Container

iPerf3
Container

iPerf3

iPerf3 iPerf3

eth0 eth0 eth0 eth0 eth0

VxLAN VxLAN VxLAN

vBridge

Veth0

S2 - Linux Overlay

Hardware Software
CPU Memory NIC Throughput CPU Usage

2.2 GHz 64GB 40Gbps iPerf3 mpstat
10 cores Multi-queue

S1 - Native

Single Flow Performance

TCP and UDP Throughputs under
Three Different Cases

Th
ro

ug
hp

ut
 (G

b/
s)

0

5

10

15

20

25

S1 S2 S3

6.46.5

23 TCP

• TCP Throughput of
Docker Overlay case
drops 72% compared
with native case.

Single Flow Performance

TCP and UDP Throughputs under
Three Different Cases

Th
ro

ug
hp

ut
 (G

b/
s)

0

5

10

15

20

25

S1 S2 S3

6.46.5

23 TCP

• TCP Throughput of
Docker Overlay case
drops 72% compared
with native case.

• UDP Throughput
drops 58%.

Single Flow Performance

TCP and UDP Throughputs under
Three Different Cases

Th
ro

ug
hp

ut
 (G

b/
s)

0

5

10

15

20

25

S1 S2 S3

3.94.7

9.3
6.46.5

23 TCP
UDP

Single Flow Performance

CPU Usage under Three Different
Cases for TCP

To
ta

l C
PU

 U
sa

ge

0%

2%

4%

6%

8%

10%

S1 S2 S3

User

System

SoftIRQ

* 5% indicates one cpu core is fully saturated.

Single Flow Performance

• Packet processing
overhead fully
saturates one cpu
core in two overlay
cases.

CPU Usage under Three Different
Cases for TCP

To
ta

l C
PU

 U
sa

ge

0%

2%

4%

6%

8%

10%

S1 S2 S3

User

System

SoftIRQ

~5%

* 5% indicates one cpu core is fully saturated.

Single Flow Performance

CPU Usage under Three Different
Cases for TCP

To
ta

l C
PU

 U
sa

ge

0%

2%

4%

6%

8%

10%

S1 S2 S3

User

System

SoftIRQ

~5% • Packet processing
overhead fully
saturates one cpu
core in two overlay
cases.

• Current solutions
can’t scale single
flow performance.

* 5% indicates one cpu core is fully saturated.

Multiple Flows Performance

0

10

20

30

40

1 2 3 4 5 6 ... 10 20 40 80

Native

Pair Number of Iperf Connection

Th
ro

ug
hp

ut
 (G

b/
s)

Multiple Flows Performance

0

10

20

30

40

1 2 3 4 5 6 ... 10 20 40 80

Native

Pair Number of Iperf Connection

Th
ro

ug
hp

ut
 (G

b/
s)

• Native case quickly
reaches ~37 Gbps
under TCP with only
2 pairs.

~37Gbps

Multiple Flows Performance

0

10

20

30

40

1 2 3 4 5 6 ... 10 20 40 80

Native
Linux Overlay
Docker Overlay

Pair Number of Iperf Connection

Th
ro

ug
hp

ut
 (G

b/
s)

• Native case quickly
reaches ~37 Gbps
under TCP with only
2 pairs.

• In two overlay cases,
TCP throughput
grows slowly.

Multiple Flows Performance

0

10

20

30

40

1 2 3 4 5 6 ... 10 20 40 80

Native
Linux Overlay
Docker Overlay

Pair Number of Iperf Connection

Th
ro

ug
hp

ut
 (G

b/
s)

• Native case quickly
reaches ~37 Gbps
under TCP with only
2 pairs.

• In two overlay cases,
TCP throughput
grows slowly.

Multiple Flows Performance

• Under the same throughput (e.g., 40 Gbps), overlay networks
consume much more CPU resources (e.g., around 2.5 times)
than the native case.

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3 4 5 6 ... 10 20 40 80 1 2 3 4 5 6 ... 10 20 40 80 1 2 3 4 5 6 ... 10 20 40 80

User
System
SoftIRQ

 Native Linux Overlay Docker Overlay
Pair Number of Iperf Connection

To
ta

l C
PU

 U
sa

ge
~2.5 times

Multiple Flows Performance

• Bad scalability is largely due to the inefficient interplay of many
tasks.

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3 4 5 6 ... 10 20 40 80 1 2 3 4 5 6 ... 10 20 40 80 1 2 3 4 5 6 ... 10 20 40 80

User
System
SoftIRQ

 Native Linux Overlay Docker Overlay
Pair Number of Iperf Connection

To
ta

l C
PU

 U
sa

ge
~2.5 times

Small Packet Performance

0

60,000

120,000

180,000

240,000

64B
128B

256B
512B

1KB
2KB

4KB
8KB

Native
Linux Overlay
Docker Overlay

Pa
ck

et
 N

um
be

r /
s

Packet Size of Iperf Connection

Small Packet Performance

0

60,000

120,000

180,000

240,000

64B
128B

256B
512B

1KB
2KB

4KB
8KB

Native
Linux Overlay
Docker Overlay

Pa
ck

et
 N

um
be

r /
s

Packet Size of Iperf Connection

• Docker overlay achieves
as low as 50% packet
processing rate of that
in the native case.

Interrupt Number with Varying Packet Sizes

0

10,000

20,000

30,000

40,000

64B
128B
256B
512B
1KB
2KB
4KB
8KB

64B
128B
256B
512B
1KB
2KB
4KB
8KB

Native
Linux Overlay
Docker Overlay

 IRQ SoftIRQ
Packet Size of Iperf Connection

IR
Q

/s
 (S

of
tIR

Q
/s

)

 IRQ SoftIRQ
Packet Size of Iperf Connection

IR
Q

/s
 (S

of
tIR

Q
/s

)

0

100,000

200,000

300,000

400,000

64B
128B
256B
512B
1KB
2KB
4KB
8KB

64B
128B
256B
512B
1KB
2KB
4KB
8KB

Native
Linux Overlay
Docker Overlay

Interrupt number for TCP Interrupt number for UDP

• IRQ number increases dramatically in the Docker overlay UDP
case — 10x of that in the TCP case.

Interrupt Number with Varying Packet Sizes

0

10,000

20,000

30,000

40,000

64B
128B
256B
512B
1KB
2KB
4KB
8KB

64B
128B
256B
512B
1KB
2KB
4KB
8KB

Native
Linux Overlay
Docker Overlay

 IRQ SoftIRQ
Packet Size of Iperf Connection

IR
Q

/s
 (S

of
tIR

Q
/s

)

 IRQ SoftIRQ
Packet Size of Iperf Connection

IR
Q

/s
 (S

of
tIR

Q
/s

)

0

100,000

200,000

300,000

400,000

64B
128B
256B
512B
1KB
2KB
4KB
8KB

64B
128B
256B
512B
1KB
2KB
4KB
8KB

Native
Linux Overlay
Docker Overlay

Interrupt number for TCP Interrupt number for UDP

• IRQ number increases dramatically in the Docker overlay UDP
case — 10x of that in the TCP case.

• 3x softIRQ numbers are observed in Docker Overlay case
compared with the IRQ numbers.

Insights and Conclusions

Insights and Conclusions
• Kernel does not provide per-packet level parallelization.

Insights and Conclusions
• Kernel does not provide per-packet level parallelization.
• Kernel does not efficiently handle various packet processing tasks.

Insights and Conclusions
• Kernel does not provide per-packet level parallelization.
• Kernel does not efficiently handle various packet processing tasks.
• Bottlenecks become more severe for small packets.

Insights and Conclusions
• Kernel does not provide per-packet level parallelization.
• Kernel does not efficiently handle various packet processing tasks.
• Bottlenecks become more severe for small packets.

Thinking about future works:

Insights and Conclusions
• Kernel does not provide per-packet level parallelization.
• Kernel does not efficiently handle various packet processing tasks.
• Bottlenecks become more severe for small packets.

Thinking about future works:
• Is it feasible to provide packet-level parallelization for a single network

flow?

Insights and Conclusions
• Kernel does not provide per-packet level parallelization.
• Kernel does not efficiently handle various packet processing tasks.
• Bottlenecks become more severe for small packets.

Thinking about future works:
• Is it feasible to provide packet-level parallelization for a single network

flow?

• How can the kernel perform a better isolation among multiple flows
especially for efficiently utilizing shared hardware resources?

Insights and Conclusions
• Kernel does not provide per-packet level parallelization.
• Kernel does not efficiently handle various packet processing tasks.
• Bottlenecks become more severe for small packets.

Thinking about future works:
• Is it feasible to provide packet-level parallelization for a single network

flow?

• How can the kernel perform a better isolation among multiple flows
especially for efficiently utilizing shared hardware resources?

• Can the packets be further coalesced with optimized network path for
reduced interrupts and context switches?

Thank you!

