
NetWarden: Mitigating Network Covert
Channels without Performance Loss

Jiarong Xing, Adam Morrison, Ang Chen

Rice University

Motivation: Mitigating network covert channels

1

Secretary

President

Launch code:
1011

Code is 1011

Attacker

Launch
code

Motivation: Mitigating network covert channels

2

Secretary

President

Launch code:
1011

Ah!
1011

Attacker

Launch
code

• Covert channels:

TCP hdr: 1011

H E L L O

• Storage channels: changing the packet header fields.

Motivation: Mitigating network covert channels

3

Secretary

President

Launch code:
1011

Ah!
1011

Attacker

Launch
code

• Covert channels:

TCP hdr: 1011

H E L L O

H E L L O

1 0 11

• Storage channels: changing the packet header fields.

• Timing channels: changing the timing of packets.

State of the art: Existing channels

4

• Covert storage channels:
• TCP initial sequence number channel (Rowland, 1997)
• IP TTL channel (Qu, 2004)
• Partial ACK channel (Luo, 2009)
…

• Covert timing channels:
• IP timing channel (Cabuk, 2004)
• TCP timing channel (Luo, 2008)
• Physical layer channel (Lee, 2014)
…

• Covert channels can leak data over long distance effectively
• “Common Criteria” require protection against both channel types!

State of the art: Storage channel defense

5

replace (+2)

Repeat for EVERY packets for Tbps traffic

Field X = a

replace (+2)
Field X = a +2

Field X = b

replace (+2)
Field X = b +2

Field X = c

replace (+2)
Field X = c +2

Field X = d

replace (+2)
Field X = d +2

…

• State-of-the-art solutions are software-based
• Detection: Per-packet header inspection
• Mitigation: Per-packet header modification

TCP sender

TCP hdr: 1011

H E L L O

TCP receiver

TCP hdr: 1101

H E L L O

• As a result, they are very inefficient!

6

State of the art: Timing channel detection

• Detection: Statistics-based tests over packet gaps
• Looking for signs of statistical deviation
• → Not always accurate

H E L L O
Normal
traffic:

H E L L O
With

channel:
Two peaks

One peak

Distribution of packet gaps

1 0 11

7

With channel:

After mitigating:

H E L L O

1 0 11

H E L L O

1 1 10

State of the art: Timing channel mitigation

• Mitigation: Add random delay to each packet
• Destroy the original timing of the packets

8

With channel:

After mitigating:

H E L L O

1 0 11

H E L L O

1 1 10

extra delay

State of the art: Timing channel mitigation

• Mitigation: Add random delay to each packet
• Destroy the original timing of the packets

• It will increase the latency of TCP connections

9

Problem: Performance penalty

• Detection:

• Per-packet inspection required

• Software cannot keep up with Tbps traffic

• Mitigation:

• Adding random delay to each packet → Increase latency

• Collateral damage → Affects legitimate traffic (e.g., false positives)

10

Key question

Can we mitigate covert channels
while preserving performance?

Approach: NetWarden

11

• NetWarden: A performance-preserving covert channel defense.

Secretary

President

Launch code:
1011

????

Attacker

TCP hdr: 1011

H E L L O

H E L L O

1 0 11

ToR switch

NetWarden

Key challenges and solutions

12

• Challenge #1: Efficient detection

• Solution: Use programmable switches

• Challenge #2: Performance-preserving mitigation

• Solution: Performance “boosting”

• Challenge #3: Hardware limitations

• Solution: Fastpath/slowpath co-design

Outline

- Motivation: Mitigating network covert channels

- State of the art: Performance penalty

- Approach: NetWarden

- NetWarden design

- Challenge #1: Efficient detection

- Challenge #2: Performance-preserving mitigation

- Challenge #3: Hardware limitations

- Initial validation

- Ongoing work

- Conclusion

13

Challenge #1: Efficient detection

14

• Solution: Detecting covert channels on programmable switches.

• Problem: Software-based detection cannot handle Tbps traffic.

• Programmable switches have two layers:

• Control plane: General purpose CPU.

• Data plane: Programmable ASIC.

M
e

m
o

ry

Switch control plane

M
e

m
o

ry

M
e

m
o

ry

M
e

m
o

ry

15

Challenge #2: Performance-preserving mitigation

• Two boosters:

• ACK booster: Generate ACK packets in advance.

• Receive window booster: Enlarge receive window
field temporarily.

• Solution: Temporarily boosting TCP performance to
neutralize the performance penalty.

• Problem: Existing mitigations incur performance loss.

16

Challenge #2: Performance-preserving mitigation

• Two boosters:

• ACK booster: Generate ACK packets in advance.

• Receive window booster: Enlarge receive window
field temporarily.

• Solution: Temporarily boosting TCP performance to
neutralize the performance penalty.

• Two boosters:

• ACK booster: Generate ACK packets in advance.

• Receive window booster: Enlarge receive window
field temporarily.

• Problem: Existing mitigations incur performance loss.

17

Boosting performance: ACK booster

NetWarden

18

Boosting performance: ACK booster

NetWarden

19

Boosting performance: ACK booster

NetWarden

20

Boosting performance: ACK booster

NetWarden

21

Boosting performance: ACK booster

NetWarden

Performance boosting

• Creates the illusion of a shorter latency as perceived by the sender.

22

Challenge #3: Hardware limitations

• Solution: Fastpath/slowpath co-design

• Problem: The data plane has hardware restrictions

• E.g., does not support packet caching

• Or complex statistical tests

Packet buffers Statistical tests

Traffic

Fast path
(data plane)

Slow path
(control plane)

Storage channel detector

Timing channel detector

Outline

- Motivation: Mitigating network covert channels

- State of the art: Performance penalty

- Approach: NetWarden

- NetWarden design

- Challenge #1: Efficient detection

- Challenge #2: Performance-preserving mitigation

- Challenge #3: Hardware limitations

- Initial validation

- Ongoing work

- Conclusion

23

Experimental setup

24

• Proof-of-concept prototype:

• P4 for fastpath

• Python for slowpath

• Runs in software-based simulator.

• Two covert channels:

• Channel #1: TCP storage channel

• Channel #2: IP timing channel

• Scenario: Client downloads file from NetWarden-protected server

• Baseline: A naïve defense without performance boosting

Results: Effectiveness

25• NetWarden can mitigate covert channels effectively.

Bit decoding
error rate (%)

100

75

50

25

0
4

50

No defense Naïve defense NetWarden

49
Random guess

Perfect decoding

Perfect decoding
(flip 0/1)

• Naïve defense: renders decoding to a random guess.

• NetWarden: very close to a random guess.

Results: Performance

26• NetWarden can mitigate covert channels with minimal performance loss.

Normalized file
downloading time

1.2

1.1

1.0

0.9

1.00

1.18

No defense Naïve defense NetWarden

1.03

• Naïve defense incurs 18% extra downloading time.

• NetWarden only incurs 3% extra downloading time.

Ongoing work

27

• How should we divide the labor between fastpath and slowpath?

• “Optimal” division of labor

• How much performance boosting should NetWarden perform?

• Too much → unfair to other connections

• Too little → cannot neutralize performance loss

• How can we make NetWarden effective for all TCP variants?

Conclusion

28

• Motivation: Mitigating network covert channels

• Key limitation of existing approaches:

• Performance penalty

• Our approach: NetWarden

• Using programmable data planes

• Performance boosting

• Fastpath/slowpath design

• The goal of NetWarden:

• Mitigating covert channels without performance loss!

Questions?

