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• Storage channels: changing the packet header fields.

• Timing channels: changing the timing of packets.



State of the art: Existing channels
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• Covert storage channels:
• TCP initial sequence number channel (Rowland, 1997)
• IP TTL channel (Qu, 2004) 
• Partial ACK channel (Luo, 2009)
…

• Covert timing channels:
• IP timing channel (Cabuk, 2004)
• TCP timing channel (Luo, 2008)
• Physical layer channel (Lee, 2014)
…

• Covert channels can leak data over long distance effectively
• “Common Criteria” require protection against both channel types!



State of the art: Storage channel defense
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• State-of-the-art solutions are software-based
• Detection: Per-packet header inspection 
• Mitigation: Per-packet header modification
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• As a result, they are very inefficient!
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State of the art: Timing channel detection

• Detection: Statistics-based tests over packet gaps
• Looking for signs of statistical deviation
• → Not always accurate
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State of the art: Timing channel mitigation

• Mitigation: Add random delay to each packet
• Destroy the original timing of the packets
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State of the art: Timing channel mitigation

• Mitigation: Add random delay to each packet
• Destroy the original timing of the packets

• It will increase the latency of TCP connections
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Problem: Performance penalty

• Detection:

• Per-packet inspection required

• Software cannot keep up with Tbps traffic

• Mitigation: 

• Adding random delay to each packet → Increase latency

• Collateral damage → Affects legitimate traffic (e.g., false positives)
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Key question

Can we mitigate covert channels  
while preserving performance?



Approach: NetWarden

11

• NetWarden: A performance-preserving covert channel defense.
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Key challenges and solutions
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• Challenge #1: Efficient detection 

• Solution: Use programmable switches

• Challenge #2: Performance-preserving mitigation 

• Solution: Performance “boosting”

• Challenge #3: Hardware limitations 

• Solution: Fastpath/slowpath co-design
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Challenge #1: Efficient detection
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• Solution: Detecting covert channels on programmable switches.

• Problem: Software-based detection cannot handle Tbps traffic.

• Programmable switches have two layers: 

• Control plane: General purpose CPU.

• Data plane: Programmable ASIC.
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Challenge #2: Performance-preserving mitigation

• Two boosters:

• ACK booster: Generate ACK packets in advance.

• Receive window booster: Enlarge receive window 
field temporarily.

• Solution: Temporarily boosting TCP performance to 
neutralize the performance penalty. 

• Problem: Existing mitigations incur performance loss.
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Boosting performance: ACK booster

NetWarden
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Boosting performance: ACK booster

NetWarden
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Boosting performance: ACK booster

NetWarden

Performance boosting

• Creates the illusion of a shorter latency as perceived by the sender.
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Challenge #3: Hardware limitations

• Solution: Fastpath/slowpath co-design

• Problem: The data plane has hardware restrictions

• E.g., does not support packet caching 

• Or complex statistical tests
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Experimental setup
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• Proof-of-concept prototype: 

• P4 for fastpath

• Python for slowpath

• Runs in software-based simulator.

• Two covert channels: 

• Channel #1: TCP storage channel

• Channel #2: IP timing channel

• Scenario: Client downloads file from NetWarden-protected server 

• Baseline: A naïve defense without performance boosting



Results: Effectiveness   

25• NetWarden can mitigate covert channels effectively.
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• Naïve defense: renders decoding to a random guess.

• NetWarden: very close to a random guess.



Results: Performance

26• NetWarden can mitigate covert channels with minimal performance loss.

Normalized file 
downloading time
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• Naïve defense incurs 18% extra downloading time.

• NetWarden only incurs 3% extra downloading time.



Ongoing work
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• How should we divide the labor between fastpath and slowpath?

• “Optimal” division of labor

• How much performance boosting should NetWarden perform?

• Too much → unfair to other connections

• Too little → cannot neutralize performance loss

• How can we make NetWarden effective for all TCP variants?



Conclusion
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• Motivation: Mitigating network covert channels

• Key limitation of existing approaches: 

• Performance penalty

• Our approach: NetWarden

• Using programmable data planes

• Performance boosting

• Fastpath/slowpath design

• The goal of NetWarden: 

• Mitigating covert channels without performance loss!

Questions?


