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What’s the problem?

• doing backups is important

• backup process should be fast and not 
waste resources

• just reading 4 TB of data (single disk) takes 
> 6 hours

• periodic, differential, state synchronization 
with minimal resource consumption
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How do you do your 
backups?
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Picking the right tool

copy

rsync

lightweight
rsync

ZFS

dsync

Dropbox

Time
Machine

dirvish

rdiff-backup
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The generalist: rsync

• operates on file system level

• goal is to minimize data transfer

• has significant computational overhead for 
large (GB) files

• familiar to system administrators
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The new guy: dsync

• kernel-space modification

• supplemented by user-space tools

• operates on block device level

• independent of file system
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Where does it fit in the 
stack?

virtual machine

device mapper

block device block device

file system

loopback device

device mapper

virtual machine

Figure 1: Two configurations where the tracked block
device is used by a virtual machine (VM). If the VM used
a file of the host system as its backing store, the loopback
device turns this file into a block device (right).

to create a tracked device directly on top of the physical
block device (Figure 1, left). The tracked block device
replaces the physical device as the VM’s backing store.

Often, the backing store of a virtual machine is a file in
the host’s filesystem. In these cases, a loopback device
is used to convert the file into a block device. Instead
of tracking modifications to a physical device, we track
modifications to the loopback device (Figure 1, right).
The tracked device again functions as the VM’s backing
store. The tracking functionality is entirely implemented
in the host system kernel, i.e., the guests are unaware of
the tracking functionality. The guest OS does not need to
be modified, and the tracking works with all guest oper-
ating systems.

3.4 Data structure
Storing the modification status for a block requires ex-
actly one bit: a set bit denotes modified blocks, unmod-
ified blocks are represented by an unset bit. The status
bits of all blocks form a straightforward bit vector. The
bit vector is indexed by the block number. Given the
size of today’s hard disks and the option to attach multi-
ple disks to a single machine, the bit vector may occupy
multiple megabytes of memory. With 4 KiB blocks, for
example, a bit vector of 128 MiB is required to track the
per-block modifications of a 4 TiB disk. An overview of
the relationship between disk and bit vector size is pro-
vided in Table 1.

The total size of the data structure is not the only
concern when allocating memory inside the kernel; the
size of a single allocation is also constrained. The ker-
nel offers three different mechanisms to allocate mem-
ory: (1) kmalloc(), (2) __get_free_pages(), and
(3) vmalloc(). However, only vmalloc() allows us
to reliably allocate multiple megabytes of memory with
a single invocation. The various ways of allocating
Linux kernel memory are detailed in “Linux Device
Drivers” [7].

Total memory consumption of the tracking data struc-
tures may still be a concern: even commodity (consumer)
machines commonly provide up to 5 SATA ports for at-
taching disks. Hard disk sizes of 4 TB are standard these
days too. To put this in context, the block-wise dirty sta-
tus for a 10 TiB setup requires 320 MiB of memory. We
see two immediate ways to reduce the memory overhead:

1. Increase the minimum unit size from a single block
to 2, 4, or even more blocks.

2. Replace the bit vector by a different data structure,
e.g., a bloom filter.

A bloom filter could be configured to work with a frac-
tion of the bit vector’s size. The trade-off is potential
false positives and a higher (though constant) computa-
tional overhead when querying/changing the dirty status.
We leave the evaluation of tradeoffs introduced by bloom
filters for future work.

Our prototype currently does not persist the modifica-
tion status across reboots. Also, the in-memory state is
lost, if the server suddenly loses power. One possible so-
lution is to persist the state as part of the server’s regular
shutdown routine. During startup, the system initializes
the tracking bit vector with the state written at shutdown.
If the initialization state is corrupt or not existing, each
block is marked “dirty” to force a full synchronization.

3.5 User-space interface
The kernel extensions export the relevant information to
user space. For each device registered with our cus-
tomized device mapper, there is a corresponding file in
/proc, e.g., /proc/mydev. Reading the file gives a
human-readable list of block numbers which have been
written. Writing to the file resets the information, i.e., it
clears the underlying bit vector. The /proc file system
integration uses the seq_file interface [15].

Extracting the modified blocks from a block device
is aided by a command line tool called dmextract.
The dmextract tool takes as its only parame-
ter the name of the device on which to oper-
ate, e.g., # dmextract mydevice. By conven-
tion, the block numbers for mydevice are read from
/proc/mydevice and the block device is found at
/dev/mapper/mydevice. The tool outputs, via stan-
dard out, a sequence of (blocknumber,data) pairs. Out-
put can be redirected to a file, for later access, or di-
rectly streamed over the network to the backup location.
The complementing tool for block integration, dmmerge,
reads a stream of information as produced by dmextract
from standard input, A single parameter points to the
block device into which the changed blocks shall be in-
tegrated.
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How is dsync 
implemented?

• modification to device mapper module 
(drivers/md/dm-linear.c)

• one bit per 4 KiB block

• for example, 4 TiB disk requires 128 MiB bit 
vector

• in-memory data structure
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Interfacing with dsync

• virtual file in /proc

• user-space tools to extract and merge 
block from/into device

• can build shell pipeline:

# dmextract srcdev | ssh remote dmmerge 
targetdev
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How was dsync 
evaluated?

• mix of synthetic and real world workloads

• synthetic: random block modifications

• real world: virtual machine disks (RUBiS) 
and Microsoft Research traces

• two machines (source and target) 
connected via switched Gigabit Ethernet
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Sync times for various 
tools

SSD,
Figure 3

10% block updates
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Sync times for various 
tools 
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Figure 2: Synchronization time for five different syn-
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CPU utilization at the 
source
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Figure 4: CPU utilization for a sample run of three syn-
chronization tools. 100% means all cores are busy.

Figure 5: Network transmit traffic on the sender side
measured for the entire system. rsync and dsync trans-
mit about the same amount of data in total, although the
effective throughput of rsync is much lower.

about 400 seconds, compared with 400 seconds for dsync
and 420 seconds for ZFS.

We concluded that the random I/O operations were
inhibiting dsync performance. Hence, we performed a
second set of benchmarks where we used SSDs instead
of HDDs. The results are shown in Figure 3. While
the increased random I/O performance of SSDs does not
matter for rsync, its synchronization time is identical to
the HDD benchmark, SSDs enable all other methods to
finish faster. dsync’s time to synchronize 32 GiB drops
from 400 s on HDD to only 220 s on SSD.

Intrigued by the trade-off between hard disk and solid
state drives, we measured the read and write rate of our
drives outside the context of dsync. When extracting or
merging modified blocks they are processed in increas-
ing order by their block number. We noticed that the
read/write rate increased by up to 10x when processing
a sorted randomly generated sequence of block numbers
compared to the same unsorted sequence. For a random
but sorted sequence of blocks our HDD achieves a read
rate of 12 MB/s and a write rate of 7 MB/s. The SSD
reads data twice as fast at 25 MB/s and writes data more
than 15x as fast at 118 MB/s. This explains why, if HDDs
are involved, copy finishes faster than dsync although
copy’s transfer volume is 9x that of dsync: sequentially
going through the data on HDD is much faster than se-
lectively reading and writing only changed blocks.

To better highlight the differences between the meth-
ods, we also present CPU and network traffic traces for
three of the five methods. Figure 4 shows the CPU
utilization while Figure 5 shows the outgoing network
traffic at the sender. The trace was collected at the

sender while synchronizing 32 GiB from/to SSD. The
CPU utilization includes the time spent in kernel and user
space, as well as waiting for I/O. We observe that rsync
is CPU-bound by its single-threaded rolling checksum
computation. Up to t = 500 the rsync sender process is
idle, while one core on the receiver-side computes check-
sums (not visible in the graph). During rsync’s second
phase, one core, on our 6-core benchmark machine, is
busy computing and comparing checksums for the re-
maining 1400 s (23 min). The network traffic during
that time is minimal at less than 5 MB/s. copy’s exe-
cution profile taxes the CPU much less: utilization oscil-
lates between 0% and 15%. On the other hand, it can be
visually determined that copy generates much more traf-
fic volume than either rsync or dsync. copy generates
about 90 MB/s of network traffic on average. dsync’s ex-
ecution profile uses double the CPU power of copy, but
only incurs a fraction of the network traffic. dsync’s net-
work throughput is limited by the random read-rate at the
sender side.

Even though the SSD’s specification promises 22.5k
random 4 KiB reads [2], about 90 MiB/s, we are only
able to read at a sustained rate of 20 MB/s at the appli-
cation layer. Adding a loopback device to the configu-
ration, reduces the application layer read throughput by
about another 5 MB/s. This explains why dsync’s sender
transmits at 17 MB/s. In this particular scenario dsync’s
performance is read-limited. Anything that would help
with reading the modified blocks from disk faster, would
decrease the synchronization time even further.

Until now we kept the modification ratio fixed at 10%,
which seemed like a reasonable change rate. Next we

32 GiB,
SSD,

Figure 4
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Network utilization at 
source

Figure 4: CPU utilization for a sample run of three syn-
chronization tools. 100% means all cores are busy.
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Figure 5: Network transmit traffic on the sender side
measured for the entire system. rsync and dsync trans-
mit about the same amount of data in total, although the
effective throughput of rsync is much lower.

about 400 seconds, compared with 400 seconds for dsync
and 420 seconds for ZFS.

We concluded that the random I/O operations were
inhibiting dsync performance. Hence, we performed a
second set of benchmarks where we used SSDs instead
of HDDs. The results are shown in Figure 3. While
the increased random I/O performance of SSDs does not
matter for rsync, its synchronization time is identical to
the HDD benchmark, SSDs enable all other methods to
finish faster. dsync’s time to synchronize 32 GiB drops
from 400 s on HDD to only 220 s on SSD.

Intrigued by the trade-off between hard disk and solid
state drives, we measured the read and write rate of our
drives outside the context of dsync. When extracting or
merging modified blocks they are processed in increas-
ing order by their block number. We noticed that the
read/write rate increased by up to 10x when processing
a sorted randomly generated sequence of block numbers
compared to the same unsorted sequence. For a random
but sorted sequence of blocks our HDD achieves a read
rate of 12 MB/s and a write rate of 7 MB/s. The SSD
reads data twice as fast at 25 MB/s and writes data more
than 15x as fast at 118 MB/s. This explains why, if HDDs
are involved, copy finishes faster than dsync although
copy’s transfer volume is 9x that of dsync: sequentially
going through the data on HDD is much faster than se-
lectively reading and writing only changed blocks.

To better highlight the differences between the meth-
ods, we also present CPU and network traffic traces for
three of the five methods. Figure 4 shows the CPU
utilization while Figure 5 shows the outgoing network
traffic at the sender. The trace was collected at the

sender while synchronizing 32 GiB from/to SSD. The
CPU utilization includes the time spent in kernel and user
space, as well as waiting for I/O. We observe that rsync
is CPU-bound by its single-threaded rolling checksum
computation. Up to t = 500 the rsync sender process is
idle, while one core on the receiver-side computes check-
sums (not visible in the graph). During rsync’s second
phase, one core, on our 6-core benchmark machine, is
busy computing and comparing checksums for the re-
maining 1400 s (23 min). The network traffic during
that time is minimal at less than 5 MB/s. copy’s exe-
cution profile taxes the CPU much less: utilization oscil-
lates between 0% and 15%. On the other hand, it can be
visually determined that copy generates much more traf-
fic volume than either rsync or dsync. copy generates
about 90 MB/s of network traffic on average. dsync’s ex-
ecution profile uses double the CPU power of copy, but
only incurs a fraction of the network traffic. dsync’s net-
work throughput is limited by the random read-rate at the
sender side.

Even though the SSD’s specification promises 22.5k
random 4 KiB reads [2], about 90 MiB/s, we are only
able to read at a sustained rate of 20 MB/s at the appli-
cation layer. Adding a loopback device to the configu-
ration, reduces the application layer read throughput by
about another 5 MB/s. This explains why dsync’s sender
transmits at 17 MB/s. In this particular scenario dsync’s
performance is read-limited. Anything that would help
with reading the modified blocks from disk faster, would
decrease the synchronization time even further.

Until now we kept the modification ratio fixed at 10%,
which seemed like a reasonable change rate. Next we

32 GiB,
SSD,

Figure 5
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More updates decrease 
sync time slightly
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Figure 6: For comparison, rsync synchronizes the same
data set 6, 21, and 41 minutes, respectively. copy took
between 1.5 and 2 minutes.

explored the effect of varying the percentage of modi-
fied blocks. The data size was fixed at 8 GiB and we
randomly modified 10%, 50%, and 90% percent of the
blocks. Figure 6 and 7 shows the timings for spin-
ning and solid-state disks. On HDD, interestingly, even
though the amount of data sent across the network in-
creases, the net synchronization time stays almost con-
stant for ZFS and blockmd5sync; it even decreases
for dsync. Conversely, on SSD, synchronization takes
longer with a larger number of modified blocks across
all shown methods; although only minimally so for ZFS.
We believe the increase for dsync and blockmd5sync is
due to a higher number of block-level re-writes. Updat-
ing a block of flash memory is expensive and often done
in units larger than 4 KiB [8]. ZFS is not affected by this
phenomenon, as ZFS employs a copy-on-write strategy
which turns random into sequential writes.

4.4.2 RUBiS results

We argued earlier, that a purely synthetic workload of
random block modifications artificially constrains the
performance of dsync. Although we already observed
a 5x improvement in total synchronization time over
rsync, the gain over copy was less impressive. To high-
light the difference in spatial locality between the syn-
thetic and RUBiS benchmark, we plotted the number of
consecutive modified blocks for each; this is illustrated
in Figure 8.

We observe that 80% of the modifications involve only
a single block (36k blocks at x = 1 in Figure 8). In com-
parison, there are no single blocks for the RUBiS bench-
mark. Every modification involves at least two consec-
utive blocks (1k blocks at x = 2). At the other end of
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Figure 7: Varying the percentage of modified blocks for
an 8 GiB file/device. For comparison, rsync synchro-
nizes the same data set in 5, 21, and 41 minutes, respec-
tively. A plain copy consistently took 1.5 minutes.

the spectrum, the longest run of consecutively modified
blocks is 639 for the RUBiS benchmarks. Randomly up-
dated blocks rarely yield more than 5 consecutively mod-
ified blocks. For the RUBiS benchmark, updates of 5
consecutive blocks happen most often: the total number
of modified blocks jumps from 2k to 15k moving from 4
to 5 consecutively modified blocks.

Now that we have highlighted the spatial distribution
of updates, Figure 9 illustrates the results for our RUBiS
workload. We present numbers for the HDD case only
because this workload is less constrained by the number
of I/O operations per second. The number of modified
blocks was never the same between those 20 runs. In-
stead, the number varies between 659 and 3813 blocks.
This can be explained by the randomness inherent in each
RUBiS benchmark invocation. The type and frequency
of different actions, e.g., buying an item or browsing the
catalog, is determined by chance. Actions that modify
the database increase the modified block count.

The synchronization time shows little variation be-
tween runs of the same method. copy transfers the en-
tire 11 GiB of data irrespective of actual modifications.
There should, in fact, be no difference based on the num-
ber of modifications. rsync’s execution time is domi-
nated by checksum calculations. dsync, however, trans-
fers only modified blocks and should show variations.
The relationship between modified block count and syn-
chronization time is just not discernible in Figure 9. Al-
ternatively, we calculated the correlation coefficient for
dsync which is 0.54. This suggests a positive correlation
between the number of modified blocks and synchroniza-
tion time. The correlation is not perfect because factors

8 GiB,
HDD,

Figure 6
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Sync time on real-
world traces
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Figure 10: Synchronization times for realistic block-
level update patterns on HDDs. Lower is better. The re-
sults for the remaining days 3-6 are identical to the first.

Regarding the runtime overhead of maintaining the
bitmap used to track changed blocks, we do not expect
this to noticeably affect performance in typical use cases.
Setting a bit in memory is orders of magnitude faster than
actually writing a block to disk.

5 Related work

lvmsync [16] is a tool with identical intentions as dsync,
but less generic than dsync. While dsync operates on
arbitrary block devices, lvmsync only works for parti-
tions managed by the logical volume manager (LVM).
lvmsync extracts the modifications that happened to an
LVM partition since the last snapshot. To provide snap-
shots, LVM has to keep track of the modified blocks,
which is stored as meta-data. lvmsync uses this meta-
data to identify and extract the changed blocks.

File systems, such as ZFS, and only recently btrfs,
also support snapshots and differential backups. In ZFS,
differential backups are performed using the ZFS send
and receive operations. The delta between two snapshots
can be extracted and merged again with another snap-
shot copy, e.g., at a remote backup machine. Only users
of ZFS, however, can enjoy those features. For btrfs,
there exists a patch to extract differences between two
snapshot states [6]. This feature is, however, still consid-
ered experimental. Besides the file system, support for
block tracking can be implemented higher up still in the
software stack. VMware ESX, since version 4, is one
example which supports block tracking at the applica-
tion layer. In VMware ESX server the feature is called
changed block tracking. Implementing support for effi-
cient, differential backups at the block-device level, like

0 1 2
day of block-level trace

0

200

400

600

800

1000

ti
m

e
[s

]

rsync
dsync

copy
blockmd5sync

zfs

Figure 11: Synchronization times for realistic block-
level update patterns on SSDs. Lower is better. The re-
sults for the remaining days 3-6 are identical to the first.

dsync does, is more general, because it works regardless
of the file system and application running on top.

If updates must be replicated more timely to reduce the
inconsistency window, the distributed replicated block
device (DRBD) synchronously replicates data at the
block level. All writes to the primary block device are
mirrored to a second, standby copy. If the primary block
device becomes unavailable, the standby copy takes over.
In single primary mode, only the primary receives up-
dates which is required by file systems lacking concur-
rent access semantics. Non-concurrent file systems as-
sume exclusive ownership of the underlying device and
single primary mode is the only viable DRBD configura-
tion in this case. However, DRBD also supports dual-
primary configurations, where both copies receive up-
dates. A dual-primary setup requires a concurrency-
aware file system, such as GFS or OCFS, to maintain
consistency. DRBD is part of Linux since kernel version
2.6.33.

There also exists work to improve the efficiency of
synchronization tools. For example, Rasch and Burns
[13] proposed for rsync to perform in-place updates.
While their intention was to improve rsync performance
on resource-constraint mobile devices, their approach
also helps with large data sets on regular hardware. In-
stead of creating an out-of-place copy and atomically
swapping this into place at the end of the transfer, the
patch performs in-place updates. Since their original
patch, in-place updates have been integrated into regu-
lar rsync.

A more recent proposal tackles the problem of page
cache pollution [3]. During the backup process many
files and related meta-data are read. To improve system

32 GiB,
HDD,

Figure 10
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Summary

• tool to synchronize data at the block 
device level

• file system agnostic

• trades space for CPU and disk I/O 
bandwidth: track modifications instead of 
computing checksums
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Open Science

• http://bitbucket.org/tknauth/devicemapper/
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Work for PLX Technology or know anyone 
who works for them? Please come and talk to 
me!
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