dsync: Efficient
Synchronization of Multi-
Gigabyte Binary Data

Thomas Knauth, Christof Fetzer

S

November 7 @ LISA 2013

What'’s the problem!?

doing backups is important

backup process should be fast and not
waste resources

just reading 4 TB of data (single disk) takes
> 6 hours

periodic, differential, state synchronization
with minimal resource consumption

How do you do your
backups!?

Picking the right tool

dirvish
copy ZFS
Time | |
Machine lightweight -
rsync ropbox
rsync
dsync

rdiff-backup

The generalist: rsync

® operates on file system level
® goal is to minimize data transfer

® has significant computational overhead for
large (GB) files

® familiar to system administrators

Saturday, November 23, 2013

The new guy: dsync

® kernel-space modification
® supplemented by user-space tools
® operates on block device level

® independent of file system

Where does it fit in the
stack?

virtual machine

device mapper

virtual machine loopback device

block device block device

Saturday, November 23, 2013

How is dsync
implemented!?

® modification to device mapper module
(drivers/md/dme-linear.c)

® one bit per 4 KiB block

® for example, 4 TiB disk requires 128 MiB bit
vector

® in-memory data structure

Interfacing with dsync

® virtual file in /proc

® user-space tools to extract and merge
block from/into device

® can build shell pipeline:

dmextract srcdev | ssh remote dmmerge
targetdev

How was dsync
evaluated?

mix of synthetic and real world workloads
synthetic: random block modifications

real world: virtual machine disks (RUBIS)
and Microsoft Research traces

two machines (source and target)
connected via switched Gigabit Ethernet

Sync times for various
tools

0% block updates

35 -
—&@— rsync
30 I —l— dsync
SSD, o | A o
. blockmd5sync
Flgure 3 20 -V zfs

15

10

synchronization time [min]

L

12 4 8 16 32
state size [G1B]

Saturday, November 23, 2013

Sync times for various
tools

0% block updates

—l— dsync
5 —4A— copy
blockmd5sync

-V 7fs

6_

SSD,
Figure 3

synchronization time [min]

12 4 8 16 32
state size [GiB]

12

Saturday, November 23, 2013

CPU utilization at the
source

32 GiB, e
S, £ L.
Figure 4

[%]

CPU utilization

0 |
0 500 1000 1500 2000
time [s]

|3

Network utilization at
source

120

32 GiB, £
= copy
SSD, 2 wflilii-
S
Figure 5 é 60
2
5w
=
S dsync
5 It
2 20 LA &I rsync
0 ooy "'"i/ it It |
0 500 1000 1500 2000
time [s]

Saturday, November 23, 2013

More updates decrease
sync time slightly

3.5 -

—l— dsync blockmd5sync V- zfs
3.0 -

2.5 -

2.0 v\ \V VvV

8 GiB,
1.5 \

synchronization time [min]

HDD, —m
Figure 6 Lo
0.5
0.0 | | | | |
0 20 40 60 80 100

percentage randomly updated blocks
|5

Saturday, November 23, 2013

Sync time on real-

32 GiB,
HDD,
Figure 10

world traces

B rsync B copy 1 zfs
B dsync 1 blockmd5syne
1000
800
— 600
2
Q
£
* 400
200
0 [] []]
0 1 2

day of block-level trace

|6

Saturday, November 23, 2013

Summary

® tool to synchronize data at the block
device level

® file system agnostic

® trades space for CPU and disk I/O
bandwidth: track modifications instead of
computing checksums

Saturday, November 23, 2013

Open Science

® http://bitbucket.org/tknauth/devicemapper/

Help!

Work for PLX Technology or know anyone
who works for them? Please come and talk to
me!

http://bitbucket.org/tknauth/devicemapper/
http://bitbucket.org/tknauth/devicemapper/

