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What'’s the problem!?

doing backups is important

backup process should be fast and not
waste resources

just reading 4 TB of data (single disk) takes
> 6 hours

periodic, differential, state synchronization
with minimal resource consumption




How do you do your
backups!?




Picking the right tool
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The generalist: rsync

® operates on file system level
® goal is to minimize data transfer

® has significant computational overhead for
large (GB) files

® familiar to system administrators
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The new guy: dsync

® kernel-space modification
® supplemented by user-space tools
® operates on block device level

® independent of file system




Where does it fit in the
stack?

virtual machine

device mapper

virtual machine loopback device

block device block device
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How is dsync
implemented!?

® modification to device mapper module
(drivers/md/dme-linear.c)

® one bit per 4 KiB block

® for example, 4 TiB disk requires 128 MiB bit
vector

® in-memory data structure




Interfacing with dsync

® virtual file in /proc

® user-space tools to extract and merge
block from/into device

® can build shell pipeline:

# dmextract srcdev | ssh remote dmmerge
targetdev




How was dsync
evaluated?

mix of synthetic and real world workloads
synthetic: random block modifications

real world: virtual machine disks (RUBIS)
and Microsoft Research traces

two machines (source and target)
connected via switched Gigabit Ethernet




Sync times for various
tools
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Sync times for various
tools
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CPU utilization at the
source
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Network utilization at
source
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More updates decrease
sync time slightly
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Sync time on real-
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Summary

® tool to synchronize data at the block
device level

® file system agnostic

® trades space for CPU and disk I/O
bandwidth: track modifications instead of
computing checksums
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Open Science

® http://bitbucket.org/tknauth/devicemapper/

Help!

Work for PLX Technology or know anyone
who works for them? Please come and talk to
me!
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